BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
Description
B 君有两个好朋友,他们叫宁宁和冉冉。有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求
Input
一行三个整数 b;d;n
Output
一行一个数表示模 7528443412579576937 之后的结果。
Sample Input
Sample Output
HINT
其中 0<b^2< = d<(b+1)2< = 10^18,n< = 10^18,并且 b mod 2=1,d mod 4=1
$通过通项式可以求出递推式,具体的,
有递推式Ax_n+Bx_{n-1}+Cx_{n-2}=0$
$用Ax^{2}+Bx+C=0解出x_1,x_2,那么通项为S_n=(k_1*x_1)^{n}+(k_2*x_2)^{n}$
$首先设S_n=(\frac{b+\sqrt{d}}{2})^{n}+(\frac{b-\sqrt{d}}{2})^{n}$
$x_1=\frac{b+\sqrt{d}}{2},x_2=\frac{b-\sqrt{d}}{2}$
$A=1,B=b,C=\frac{b^{2}-d}{4}$
$之后就可以用矩阵乘法求S_n了,并且我们发现(\frac{b-\sqrt{d}}{2})^{n}的取值为[-1,1]$
$它对答案有贡献当且仅当n为偶数,b\not=\sqrt{d}$
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;
typedef unsigned long long ll;
typedef double du;
ll mod=7528443412579576937ll,b,d,n;
ll qc(ll x,ll y) {
ll re=0;
while(y>=1) {
if(y&1ll) re=(re+x)%mod;
x=(x+x)%mod;
y>>=1ll;
}
return re;
}
struct Mat {
ll v[2][2];
Mat(){memset(v,0,sizeof(v));}
Mat operator*(const Mat &x)const {
Mat re;int i,j,k;
for(i=0;i<2;i++) {
for(j=0;j<2;j++) {
for(k=0;k<2;k++) {
re.v[i][j]=(re.v[i][j]+qc(v[i][k],x.v[k][j]))%mod;
}
}
}
return re;
}
};
Mat qp(Mat x,ll y) {
Mat I;
I.v[0][0]=I.v[1][1]=1;
while(y>=1) {
if(y&1ll) I=I*x;
x=x*x;
y>>=1ll;
}
return I;
}
int main() {
scanf("%llu%llu%llu",&b,&d,&n);
Mat x;
x.v[0][0]=0; x.v[0][1]=(d-b*b)/4; x.v[1][0]=1; x.v[1][1]=b;
Mat T=qp(x,n);
ll ans=(qc(2,T.v[0][0])+qc(b,T.v[1][0]))%mod;
if(d!=b*b&&n%2==0) ans--;
printf("%llu\n",ans);
}
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法的更多相关文章
- 【bzoj4002】[JLOI2015]有意义的字符串 数论+矩阵乘法
题目描述 B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 输入 一行三个整数 b;d;n 输出 一行一个数表示模 7528443412579576937 ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ4002】[JLOI2015]有意义的字符串 数学
[BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...
- [JLOI2015]有意义的字符串
4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1000 Solved: 436[Submit][St ...
- B20J_1297_[SCOI2009]迷路_矩阵乘法
B20J_1297_[SCOI2009]迷路_矩阵乘法 题意:有向图 N 个节点,从节点 0 出发,必须恰好在 T 时刻到达节点 N-1.总共有多少种不同的路径? 2 <= N <= 10 ...
- BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法
BZOJ_1875_[SDOI2009]HH去散步_矩阵乘法 Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时H ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法
BZOJ_4870_[Shoi2017]组合数问题_矩阵乘法 Description Input 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ ...
- BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法
BZOJ_1712_[Usaco2007 China]Summing Sums 加密_矩阵乘法 Description 那N只可爱的奶牛刚刚学习了有关密码的许多算法,终于,她们创造出了属于奶牛 ...
随机推荐
- Mybatis解决jdbc编程的问题
1.1.1 Mybatis解决jdbc编程的问题 1. 数据库链接创建.释放频繁造成系统资源浪费从而影响系统性能,如果使用数据库链接池可解决此问题. 解决:在SqlMapConfig.xml中配置 ...
- 接口文档神器之apidoc
//@desn:apidoc linux环境 windows环境使用 //@desn:码字不宜,转载请注明出处 //@author:张慧源 <turing_zhy@163.com> / ...
- 【.NET Core】ASP.NET Core之IdentityServer4(1):快速入门
[.NET Core]ASP.NET Core之IdentityServer4 本文中的IdentityServer4基于上节的jenkins 进行docker自动化部署. 使用了MariaDB,EF ...
- Spring Security简明实践及相关国际化处理
别人的都是最佳实践,因为我目前的设置没有按照参考文档推荐,还是采用DelegatingFilterProxy,所以我只能说简明实践.先贴我的applicationContext-security.xm ...
- windows下用C++修改本机IP地址
两种方法 第一种.使用DOS命令(即时生效) 第二种.修改注册表(重启生效) 1.打开SOFTWARE\Microsoft\Windows NT\CurrentVersion\NetworkCards ...
- memcached server install(WSL)
prepare:0) libevent-dev1) libseccomp-dev2) build-essential3) automake install: https://www.liquidweb ...
- 分布式缓存管理平台XXL-CACHE
<分布式缓存管理平台XXL-CACHE> 一.简介 1.1 概述 XXL-CACHE是一个分布式缓存管理平台,其核心设计目标是"让分布式缓存的接入和管理的更加的简洁和高效&quo ...
- 关于overflow的问题
<head> <title></title> <style type="text/css"> body { margin: 0; p ...
- 由清除float原理到BFC
关于浮动 设置为浮动的元素会脱离当前文档流,向左或向右移动直到边缘遇到另一个浮动元素或者到达边界.普通元素不会对齐造成影响. 浮动是把双刃剑,在给我们的布局带来便利的同时有一些缺点需要我们去解决.例如 ...
- 读《图解HTTP》有感-(与HTTP协作的WEB服务器)
写在前面 Web服务器一般指网站服务器,是指驻留于因特网上某种类型计算机的程序,可以向浏览器等Web客户端提供文档: 一台web服务器可以搭建多个独立域名的web网站,也可以作为通信路径(路由)上的中 ...