链接http://acm.tju.edu.cn/toj/showp4117.html
4117.   Happy tree friends


Time Limit: 1.0 Seconds   Memory Limit: 65536K
Total Runs: 164   Accepted Runs: 60

yuebai has an undirected complete graph with n vertices. He wants to know the minimum spanning tree of the graph. It's so easy, so yuebai wants to challenge himself. He will choose one edge which must be
in the spanning tree.

INPUT

There are multiple test cases.
For each test case, the first line contain an integer n.
In the next n lines,
there is an adjacency matrix M. Mij denotes
the weight of the edge i to j.
Next line contains two dinstinct integer u and v,
which denotes the edge which is from u to v with
the value Muv must
be in the spanning tree.
(2≤n≤100,0≤Mij≤100). Mij=0 if
and only if i=j.

OUTPUT

For each case, print the result.

Sample Input


3
0 2 3
1 0 4
5 10 0
2 3

Sample Output


5

Hint

The edge of the spanning tree is 2->3 and 2->1

Source: TJU
Team Selection 2015 Round B

用Kruskal做

只要把题目中要求的边先合和起来,其余按照模版来,题目说了无向,所以对于每边的长度取矩阵中的最小值(真是坑,一开始以为是最小树形图)

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; #define N 50005
int a[105][105];
struct graph{
int x,y,wei;
}nodd[N];
int m,n,ufind[N]; int cmp(graph a1,graph a2){
return a1.wei<a2.wei;
}
int find(int x){
return ufind[x]==x? x : ufind[x]=find(ufind[x]);
}
int Kruskal(int a,int b){
int ans=0;
int i,j;
for(i=1;i<=n;i++) ufind[i]=i;
sort(nodd,nodd+m,cmp);
ufind[a]=b;
for(i=0;i<m;i++){
int x=find(nodd[i].x); int y=find(nodd[i].y);
if(x!=y){
ans+=nodd[i].wei;
ufind[x]=y;
}
}
return ans;
} int main(){
int x;
int sum;
int temp;
int a1,a2;
int i,j,k;
while(scanf("%d",&x)!=EOF){
sum=0;
temp=0;
for(i=1;i<=x;i++)
for(j=1;j<=x;j++)
scanf("%d",&a[i][j]);
m=x*(x-1)/2;
n=x;
scanf("%d %d",&a1,&a2);
sum+=a[a1][a2];
a[a2][a1]=a[a1][a2];
for(i=1;i<=x;i++)
for(j=i+1;j<=x;j++){
nodd[temp].x=i; nodd[temp].y=j; nodd[temp].wei=min(a[i][j],a[j][i]);
temp++;
}
//for(i=0;i<temp;i++) printf("%d %d %d\n",nodd[i].x,nodd[i].y,nodd[i].wei);
printf("%d\n",Kruskal(a1,a2)+sum);
}
}

最小生成树 TOJ 4117 Happy tree friends的更多相关文章

  1. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. 二分+最小生成树【bzoj2654】: tree

    2654: tree 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 二分答案,然后跑最小生成树判断. 注意优先跑白色边. code: ...

  4. prim算法查找最小生成树

    我们在图的定义中说过,带有权值的图就是网结构.一个连通图的生成树是一个极小的连通子图,它含有图中全部的顶点,但只有足以构成一棵树的n-1条边.所谓的最小成本,就是n个顶点,用n-1条边把一个连通图连接 ...

  5. "《算法导论》之‘图’":最小生成树(无向图)

    本文主要参考自<算法>. 加权图是一种为每条边关联一个权值或是成本的图模型.这种图能够自然地表示许多应用.在一幅航空图中,边表示航线,权值则可以表示距离或是费用.在一幅电路图中,边表示导线 ...

  6. 最小生成树之Kruskal(克鲁斯卡尔)算法

    学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所 ...

  7. 最小生成树 Prim算法 和 Kruskal算法,c++描述

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  8. 最小生成树之克鲁斯卡尔(Kruskal)算法

    学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...

  9. 由最小生成树(MST)到并查集(UF)

    背景 最小生成树(Minimum Spanning Tree)的算法中,克鲁斯卡尔算法(Kruskal's algorithm)是一种常用算法. 在克鲁斯卡尔算法中的一个关键问题是如何判断图中的两个点 ...

随机推荐

  1. Visual Studio 2017 for Mac 快捷键

    格式化代码:  ^I 转到定义:⌘D 注释/反注释: ⌘/ 生成:⌘B 重新生成:^⌘B 调试运行:⌘↩ 不调试运行:⌥⌘↩ 添加/删除断点:⌘\ 查看所有断点:⌥⌘↩ 放大:⌘+ 缩小:⌘- 正常大 ...

  2. crontab定时任务一定要记得做好备份

    今天咋服务器上敲了一个 crontab 命令(没加-e ,也没加-l, 更没加 -r) 但是竟然神奇的crontab全部被清除了. 心中一万只CN

  3. nodejs和npm的安装

    下载nodejs的压缩包 网址:https://nodejs.org/en/ 下载以tar.xz结尾的包例如:node-v8.9.4-linux-x64.tar.xz 上传包到制定的目录 可以用lrz ...

  4. NOIP 总结

    NOIP 总结 实在不知道写什么标题 决定还是把我的noip总结贴上来,毕竟保存还是挺麻烦的. 扯淡 联赛考完有三个星期了,成绩也出了一个星期左右了. 终于还是决定动笔写一点联赛的总结. Day1 可 ...

  5. HashMap、Hashtable、 LinkedHashMap、TreeMap四者之分。

    java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HasMap.Hashtable.LinkedHasmap和TreeMap. (1)HashMa ...

  6. JDBC 基础

    JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口 ...

  7. Java经典编程题50道之二十三

    给一个不多于5位的正整数,要求:①求它是几位数:②逆序打印出各位数字. public class Example23 {    public static void main(String[] arg ...

  8. mac 上格式化磁盘出现MediaKit报告设备上的空间不足以执行请求的解决办法

    1.问题描述: 我使用是一个2T移动硬盘,分了5个区 2.分析原因:因为mac OSX的日志式格式需要有EFI分区进行引导,而我的移动硬盘是没有EFI分区的,这样的话就会出现问题: 3.解决办法: 1 ...

  9. myeclispe中向mysql中插入中文数据出现??问题解决办法

    或许很多人会出现??这种令人头痛的mysql的中文乱码问题:解决如下: 1.先对于新建的数据库要设置默认的字符集为UTF-8 create database mydb default characte ...

  10. 利用FileReader实现上传图片前本地预览

    引子 平时做图片上传预览时如果没有特殊的要求就直接先把图片传到后台去,成功之后拿到URL再渲染到页面上,这样做在图片比较小的时候没什么问题,大一点的话就会比较慢才能看到预览了,而且还产生了垃圾文件,所 ...