2287. [HZOI 2015]疯狂的机器人

题意:从原点出发,走n次,每次上下左右不动,只能在第一象限,最后回到原点方案数


这不煞笔提,组合数写出来发现卷积NTT,然后没考虑第一象限gg




其实就是卡特兰数

只不过这里\(C(i)\)是第\(\frac{i}{2}\)项,奇数为0

令\(f[n]\)为走n次回到原点方案数,$$

f[n]=\sum_{i=0}{n}C(i)C(n-i)\binom{n}{i}=n!\sum_{i=0}{n}C(i)\frac{1}{i!}C(n-i)\frac{1}{(n-i)!}

\[
注意阶乘和阶乘逆元别乘错了,别丢东西!!!

```cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=(1<<18)+5, INF=1e9;
const ll P=998244353;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}

ll Pow(ll a, ll b, ll P) {
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
namespace NTT{
int n, rev[N], g;
void ini(int lim) {
g=3;
n=1; int k=0;
while(n<lim) n<<=1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
}
void dft(ll *a, int flag) {
for(int i=0; i<n; i++) if(i<rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m=l>>1;
ll wn=Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l, P);
for(ll *p=a; p!=a+n; p+=l) {
ll w=1;
for(int k=0; k<m; k++) {
ll t = w*p[k+m]%P;
p[k+m] = (p[k] - t + P)%P;
p[k] = (p[k] + t)%P;
w = w*wn%P;
}
}
}
if(flag==-1) {
ll inv=Pow(n, P-2, P);
for(int i=0; i<n; i++) a[i] = a[i]*inv%P;
}
}
void mul(ll *a, ll *b) {
dft(a, 1);
for(int i=0; i<n; i++) a[i]=a[i]*a[i]%P;
dft(a, -1);
}
}using NTT::dft; using NTT::ini; using NTT::mul;

int n;
ll inv[N], fac[N], facInv[N];
ll a[N], b[N];
ll C(int n, int m) {return fac[n]*facInv[m]%P*facInv[n-m]%P;}
int main() {
//freopen("in","r",stdin);
freopen("crazy_robot.in","r",stdin);
freopen("crazy_robot.out","w",stdout);
n=read(); ini(n+n+1);
inv[1]=1; fac[0]=facInv[0]=1;
for(int i=1; i<=n; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
}
a[0]=b[0]=1;
for(int i=2; i<=n; i+=2) a[i]=b[i]= C(i, i>>1) * inv[(i>>1)+1] %P * facInv[i] %P;

mul(a, b);
for(int i=0; i<=n; i++) a[i]=a[i]*fac[i]%P;
ll ans=0;
for(int m=0; m<=n; m+=2) (ans += C(n, m) * a[m]%P) %=P;
printf("%lld\n", ans);
}
```\]

BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]的更多相关文章

  1. 【COGS】2287:[HZOI 2015]疯狂的机器人 FFT+卡特兰数+排列组合

    [题意][COGS 2287][HZOI 2015]疯狂的机器人 [算法]FFT+卡特兰数+排列组合 [题解]先考虑一维的情况,支持+1和-1,前缀和不能为负数,就是卡特兰数的形式. 设C(n)表示第 ...

  2. [COGS 2287][HZOI 2015]疯狂的机器人

    Description 题库链接 现在在二维平面内原点上有一只机器人,他每次可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格).机器人不能走到横坐标是负数或者纵坐标是负数的点上. 给 ...

  3. [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  4. COGS2287 [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  5. HDU4609 FFT+组合计数

    HDU4609 FFT+组合计数 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意: 找出n根木棍中取出三根木棍可以组成三角形的概率 题解: ...

  6. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. 【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)

    3027: [Ceoi2004]Sweet Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 71  Solved: 34 Description John ...

  9. cojs 疯狂的重心 疯狂的机器人 题解报告

    疯狂的重心 话说做过幻想乡战略游戏的人应该很容易切掉这道题目吧 我们考虑一棵树如果添加了一个叶子,那么其重心最多向叶子方向移动1的距离 而是否移动我们只需要记录子树中有多少个点就可以判断啦 也就是说这 ...

随机推荐

  1. git工作流程一览

    Git是分布式版本控制系统,没有中央服务器,每个人的电脑就是一个完整的版本库,工作的时候不需要联网了,因为版本都在自己电脑上.协同的方法是这样的:比如说自己在电脑上改了文件A,其他人也在电脑上改了文件 ...

  2. Genymotion的安装与使用(附百度云盘下载地址,全套都有,无需注册Genymotion即可使用)

    http://blog.csdn.net/scythe666/article/details/70216144 附百度云盘下载地址 :http://pan.baidu.com/s/1jHPG7h8 1 ...

  3. jq实现上传头像并实时预览功能

    效果 页面结构 <form action="" name="form0" id="form0"> <input type= ...

  4. Git的简单的基本使用

    前言: 接触了Android Studio,自然是知道了Github这个网站,这个网站有许多大神们做的开源库,我们只需要简单地引入就是可以使用到这些开源库从而实现酷炫的效果,最近也是刚接触到Git的使 ...

  5. 从零开始学习前端开发 — 10、HTML5新标签及表单控件属性和属性值

    一.html5新增标签 1.结构性标签 header 定义网页的头部 nav 定义网页的导航 footer 定义网页的底部 section 定义网页的某个区域 article 定义网页中的一篇文章 a ...

  6. 用php怎样将图片gif转化为jpg

    <?php $input= "link2.gif"; $output='test.jpg' ; $image=imagecreatefromgif($input); imag ...

  7. 解决Sublime Text 3在GBK编码下的中文乱码问题听语音

    Sublime Text 3是我最喜欢的代码编辑器,没有之一,因为她的性感高亮代码配色,更因为它的小巧,但是它默认不支持GBK的编码格式,因此打开GBK的代码文件,如果里面有中文的话,就会乱码 工具/ ...

  8. IOS开发之纯代码界面--基本控件使用篇 ┊

    http://www.cocoachina.com/bbs/read.php?tid=131516

  9. Java数据持久层框架 MyBatis之API学习十(Logging详解)

    对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...

  10. Linuxc - 标准输入流、标准输出流、标准错误流

    输入流stdin默认是键盘,输出流stdout默认是显示器,错误流stderr #include <stdio.h> int main() { printf("请输入选择的数字: ...