#导入科学计算库
#起别名避免重名
import numpy as np
#小技巧:从外往内看==从左往右看 从内往外看==从右往左看
#打印版本号
print(np.version.version) #1.16.2
#声明一个numpy数组,一层list
nlist = np.array([1,2,3])
print(nlist) #[1 2 3]
#ndim方法用来查看数组的属性--维度
print(nlist.ndim) #1
#使用shape属性来打印多维数组的形状,返回一个tuple,个数,/行数,列数
print(nlist.shape) #(3,)
#声明一个二维数组,二层list
nlist_2 = np.array([[1,2,3],[4,5,6]])
print(nlist_2)
#[[1 2 3]
#[4 5 6]]
print(nlist_2.ndim) #2
print(nlist_2.shape) #(2, 3)
#声明一个三维数组,三层list
nlist3 = np.array([[[1,2,3],[4,5,6],[7,8,9]]])
print(nlist3)
# [[[1 2 3]
# [4 5 6]
# [7 8 9]]]
print(nlist3.ndim) #3
#使用shape属性来打印多维数组的形状,返回一个tuple,个数,/行数,列数
print(nlist3.shape) #(1, 3, 3)
#使用size()方法来打印多维数组的元素个数
print(np.size(nlist)) #3
print(np.size(nlist_2)) #6
#打印numpy多维度数组的数据类型
print(type([1,2,3])) #<class 'list'>
print(type(nlist)) #<class 'numpy.ndarray'>
#使用python内置dtype属性来打印多维度数组内部元素的数据类型
print(type(123)) #<class 'int'>
print(nlist.dtype) #int32
#itemsize属性,来打印多维数组中的数据类型大小,字节
print(nlist.itemsize) #4
print(nlist_2.itemsize) #4
print(nlist3.itemsize) #4
#data属性,用来打印数据缓冲区--buffer---/也就是内存地址/
print(nlist.data) #<memory at 0x000001AF3F0BEA08>
print(nlist_2.data) #<memory at 0x000001FB22BF5CF0>
print(nlist3.data) #<memory at 0x000001FB1A730D68>
#使用reshape()方法,根据形状反向生成多维数组
nlist_3 = np.array(range(24)).reshape((3,2,4)) #3个二维数组,2每组2行,4列数
print(nlist_3)
#使用浮点--元素类型
nlist_float = np.array([1.0, 2.0, 3.0])
print(nlist_float.dtype) #float64
#使用字符串-元素类型
nlist_str = np.array(['1','2','3'])
print(nlist_str.dtype) #<U1
print(range(20))
print(type(range(20)))
nlist_4 = np.array([[[[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15],[16,17,18,19,20]]]])
print(nlist_4)
print(nlist_4.ndim)
print(nlist_4.shape)
print(nlist_4.itemsize)
print(nlist_4.dtype)
print(np.size(nlist_4))
nlist_4 = np.array(range(20)).reshape((1,1,4,5))
print(nlist_4.ndim)
nlist_2_true = np.array([[True,True,True],[True,True,True],[True,True,True]])
print(nlist_2_true)
i = []
nlist2_true = [ i.append(True) for x in range(20) ]
print(i)
nlist_2_true = np.array(range(20)).reshape((1,2,10))
print(nlist_2_true)
 
 
#声明一个size为20的四维数组
nlist_4 = np.array(range(20)).reshape((2,5,1,2))
print(nlist_4)
print(nlist_4.ndim)
print(nlist_4.shape)
#声明一个三行三列的数组
nlist_33 = np.array([[1,2,3],[1,2,3],[5,7,8]])
print(nlist_33)
print(nlist_33.shape)
print(nlist_33.ndim)
print(nlist_33.itemsize) #元素字节
print(nlist_33.size) #长度
print(np.size(nlist_33))
print(np.shape(nlist_33))
#使用ones()自动生成元素为1的多维数组
nlist_ones = np.ones((4,4))
print(nlist_ones)
print(nlist_ones.dtype) #元素float64
#使用zeros()来生成元素为0的多维数组
nlist_zeros = np.zeros((4,4))
print(nlist_zeros)
#使用empty()方法来生成随机多维数组,使用第二个参数指定元素类型
nlist_empty = np.empty([2,2],dtype=np.int)
print(nlist_empty)
print(nlist_empty.dtype) #int32
# numpy把普通list转换为数组
x = [1,2,3]
print(type(x))
nlist = np.asarray(x)
print(type(nlist))
print(nlist)
y = [(1,2,3),(4,5)]
nlist_y = np.asarray(y)
print(nlist_y.ndim) #1
#frombuffer 通过字符串(buffer内存地址)字节切片来生成多维数组
#b强转byte字节
my_str = b'Hello World'
nlist_str = np.frombuffer(my_str,dtype='S1')
print(nlist_str)
x = np.array([[1,2],[3,4]])
print(x)
#指定axis属性,可以指定当前多维数组的维度
sum0 = np.sum(x,axis = 0,keepdims=True) #axis = 0/行级/
print(sum0)
sum1 = np.sum(x,axis=1,keepdims=True) #axis = 1/列级/
print(sum1)
#多维数组赋值
x = np.array([1,2])
x[1] = 3
y = x.copy()
y[0] = 3
print(x)
#维度级的运算
a = np.array([[1,2],[3,4],[5,6]])
b = np.array([[11,22],[33,44],[55,66]])
#vstack()方法---维度一样--- vertical垂直合并
suma = np.vstack((a,b))
print(suma)
#hstack()方法---维度一样--- 横向连纵
sumb = np.hstack((a,b))
print(sumb)
#多维数组调用
nl = np.array([[1,2],[3,4],[5,6]])
print(nl[[2]])
print(nl[0][0])
print(nl[1][1])
nl[1,1] = 444
print(nl)
#删除方法 delete
#删除nlist第二行
print(np.delete(nl,1,axis=0))
print(np.delete(nl,0,axis=1))
a=np.arange(0, 20, 5)
print(a)
print(a.dtype)
b=np.arange(0, 3.0, 0.4)
print(b)
print(b.dtype)
#范围区间差 = 形状数的乘积
a=np.arange(1,5).reshape((2,2))
b=np.arange(3,7).reshape((2,2))
print(a)
print(b)
# 1、创建一个长度为10的一维全为0的多维数组,然后让第5个元素等于1
ll = np.zeros((10,))
print(ll)
print(ll.ndim)
print(ll.size)
ll[4] = 1
print(ll)
q1 = np.zeros(shape=10)
print(q1)
q1[4] = 1
print(q1)
# 2、创建一个每一行都是从0到4的5*5矩阵
# l_2 = np.array([[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4],[0,1,2,3,4]])
list_5 = np.array([[range(5)]*5])
print(list_5)
l_2 = np.array([ range(5)]*5).reshape(5,5)
print(l_2)
print(l_2.ndim) #2维
print(l_2.shape)
# 3、假如给定一个3*3的二维数组,如何交换其中两行的元素?
vv0 = np.random.randint(0,100,size=(2,2))
print(vv0)
print(vv0[[1,0]])
# 4、假如给定一个3*3的二维数组,如何交换其中两行的元素?
#使用索引
vv = np.random.randint(0,100,size=(3,3))
print(vv)
print(vv[[1,0,2]])
print(vv[[2,0,1]])
print(vv[[0,2,1]])
# 5、原数组为一维数组,内容为从 0 到 100,抽取出所有偶数。
mm = np.arange(0,101).reshape(101,)
print(mm)
print(mm[::2]) #切片,步长
mm = filter(lambda x:x%2==0, mm)
# print(np.asarray(list(mm)))
print(np.array(list(mm)))
mm = np.array(range(101))
mm = mm[mm % 2 == 0]
print(mm)
names = ['p','y','t']
ages = [18,29,20]
print({n:a for n in names for a in ages})
print({name:age for (name, age) in zip(names,ages)})
mm = np.arange(12).reshape(2,3,2)
print(mm)
print(mm.data)
print(mm.size)
print(mm.itemsize)
print(mm.ndim)
print(mm.dtype)

python科学计算库的numpy基础知识,完美抽象多维数组(原创)的更多相关文章

  1. numpy科学计算库的基础用法,完美抽象多维数组(原创)

    #起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print(' ...

  2. Python科学计算库灬numpy

    Numpy NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.Numpy许多底层函数实际上是用C编写的,因此它的矩阵向量计算速度是原生Python中无法比拟的. numpy属性 维 ...

  3. Python科学计算库

    Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成 ...

  4. Python科学计算库Numpy

    Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简 ...

  5. python科学计算库numpy和绘图库PIL的结合,素描图片(原创)

    # 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def ...

  6. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

  7. [Python学习] python 科学计算库NumPy—矩阵运算

    NumPy库的核心是矩阵及其运算. 使用array()函数可以将python的array_like数据转变成数组形式,使用matrix()函数转变成矩阵形式. 基于习惯,在实际使用中较常用array而 ...

  8. Python科学计算库-Numpy

    NumPy 是 Python 语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库,也是学习 python 必学的一个库. 1. 读取文件 numpy.gen ...

  9. Python 科学计算库numpy

    Numpy基础数据结构 NumPy数组是一个多维数组对象,称为ndarray.其由两部分组成: 实际的数据 描述这些数据的元数 # 多维数组ndarray import numpy as np ar ...

随机推荐

  1. PHP全栈学习笔记15

    PHP标记风格 PHP一共支持4种标记风格 <?php echo "这是XML风格的标记"; ?> 脚本风格 <script language="php ...

  2. python安装第三方库报错visual c++ 14.0 is required

    使用python安装第三方库时报错如下: error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ ...

  3. Xapian索引-文档检索过程分析之匹配百分比

    本文属于文档检索过程分析的一部分,重点分析文档匹配百分比(percent)的计算过程. 1 percent是什么? 我们之前分析的检索demo: Xapian::Query term_one = Xa ...

  4. .NET Core中的一个接口多种实现的依赖注入与动态选择看这篇就够了

    最近有个需求就是一个抽象仓储层接口方法需要SqlServer以及Oracle两种实现方式,为了灵活我在依赖注入的时候把这两种实现都给注入进了依赖注入容器中,但是在服务调用的时候总是获取到最后注入的那个 ...

  5. 配置Nginx部署静态资源和自动跳转到https

    一.首先在阿里云后台添加域名解析: 二.两个网站的静态资源在以下目录: /www/temp/blog/public 三.在服务器端配置nginx: cd /etc/nginx/conf.d 添加两个文 ...

  6. [转]Windows10中Virtualbox没办法选择和安装64位的Linux系统

    本文转自:https://blog.csdn.net/strivenoend/article/details/78290325 明明在公司的WIN7系统中使用Virtualbox就可以安装64位的Ub ...

  7. (摘)C#生成随机数的三种方法

    随机数的定义为:产生的所有数字毫无关系. 在实际应用中很多地方会用到随机数,比如需要生成唯一的订单号. 在C#中获取随机数有三种方法: 一.Random 类 Random类默认的无参构造函数可以根据当 ...

  8. Spring Cloud 微服务开发系列整理

    Spring Boot 系列精选 Spring Boot 自定义 starter Spring Boot 整合 mybatis-plus Spring Boot 整合 spring cache Spr ...

  9. eclipse导入java工程

    1)File下的import选项 2)点击General,选择Existing Projects into Workspace,点击next 3)点击Browse,在弹出的窗口中选择导入工程所在的文件 ...

  10. wordpress主题

    1.创建wordpress主题:在themes文件下建立新主题black文件夹 2.在black文件夹中放入index.php和style.css文件,其中index对style.css文件的引用 & ...