1492: [NOI2007]货币兑换Cash

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 5541  Solved: 2228
[Submit][Status][Discuss]

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下
简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,
两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的
价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法
。比例交易法分为两个方面:(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将
 OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;(b)买入金券:顾客支付 IP 元人民币,交易所将会兑
换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;例如,假定接
下来 3 天内的 Ak、Bk、RateK 的变化分别为:
假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:
注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经
知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能
够获得多少元钱。

Input

输入第一行两个正整数N、S,分别表示小Y能预知的天数以及初始时拥有的钱数。接下来N行,第K行三个实数AK、B
K、RateK,意义如题目中所述。对于100%的测试数据,满足:0<AK≤10;0<BK≤10;0<RateK≤100;MaxProfit≤1
0^9。
【提示】
1.输入文件可能很大,请采用快速的读入方式。
2.必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。
 

Output

只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT

Source

解题的第一个关键是知道每次操作都要完全,即买入就花光所有钱,卖出就卖出所有金券

容易列出暴力方程
f[i]=f[j]/(a[j]*r[j]+b[j])*r[j]*a[i]+f[j]/(a[j]*r[j]+b[j])*b[i]
设x[i]=f[j]/(a[j]*r[j]+b[j])*r[j]
y[i]=f[j]/(a[j]*r[j]+b[j])
f[i]=x[j]*a[i]+y[j]*b[i] 很明显可以斜率优化的式子
假设j比k优 且假设(x[k]<x[j])
那么x[j]*a[i]+y[j]*b[i]>x[k]*a[i]+y[k]*b[i]
=> -a[i]/b[i]<(y[k]-y[j])/(x[k]-x[j]) 维护上凸包

但是

由于-a[i]/b[i]不具有单调性 所以不能够用单调队列维护
由于x[i]不具有单调性 不能用单调队列维护

那么现在只要我们保证了x[i] 和-a[i]/b[i]的单调性,不就可以单调队列维护了?

可以用排序来保证-a[i]/b[i]单调 cdq分治保证x[i]单调且保证在i之前的j都已经转移完毕

 #include<bits/stdc++.h>
#define N 100005
using namespace std;
int n,s[N];double f[N];
const double eps=1e-;
const double inf=1e9;
struct query{double a,b,r,k;int id;}q[N],a[N];
struct point{
double x,y;
bool operator < (const point &b)const{
return fabs(x-b.x)<=eps?y<b.y:x<b.x;
}
}p[N],b[N];
double get(int i,int j){
if(fabs(p[i].x-p[j].x)<=eps)return -inf;
return (p[i].y-p[j].y)/(p[i].x-p[j].x);
}
void cdq(int l,int r){
if(l==r){
f[l]=max(f[l],f[l-]);
p[l].y=f[l]/(q[l].a*q[l].r+q[l].b);
p[l].x=p[l].y*q[l].r;return;
}
int mid=l+r>>;
int p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if(q[i].id<=mid)a[p1++]=q[i];
else a[p2++]=q[i];
}
for(int i=l;i<=r;i++)q[i]=a[i];
cdq(l,mid);int tp=;
for(int i=l;i<=mid;i++){
while(tp>&&get(s[tp-],s[tp])<get(s[tp],i))tp--;
s[++tp]=i;
}
int j=;
for(int i=r;i>=mid+;i--){
while(j<tp&&q[i].k<get(s[j],s[j+])+eps)j++;
f[q[i].id]=max(f[q[i].id],p[s[j]].x*q[i].a+p[s[j]].y*q[i].b);
}
cdq(mid+,r);
p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if((p[p1]<p[p2]||p2>r)&&p1<=mid)b[i]=p[p1++];
else b[i]=p[p2++];
}
for(int i=l;i<=r;i++)p[i]=b[i];
} bool cmp(query a,query b){return a.k<b.k;}
int main(){
scanf("%d%lf",&n,&f[]);
for(int i=;i<=n;i++){
scanf("%lf%lf%lf",&q[i].a,&q[i].b,&q[i].r);
q[i].k=-q[i].a/q[i].b;
q[i].id=i;
}
sort(q+,q++n,cmp);
cdq(,n);
printf("%.3lf\n",f[n]);
return ;
}

bzoj1492[NOI2007]货币兑换Cash cdq分治+斜率优化dp的更多相关文章

  1. [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化)

    [BZOJ1492] [NOI2007] 货币兑换Cash(cdq分治+斜率优化) 题面 分析 dp方程推导 显然,必然存在一种最优的买卖方案满足:每次买进操作使用完所有的人民币:每次卖出操作卖出所有 ...

  2. BZOJ 1492: [NOI2007]货币兑换Cash [CDQ分治 斜率优化DP]

    传送门 题意:不想写... 扔链接就跑 好吧我回来了 首先发现每次兑换一定是全部兑换,因为你兑换说明有利可图,是为了后面的某一天两种卷的汇率差别明显而兑换 那么一定拿全利啊,一定比多天的组合好 $f[ ...

  3. BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)

    BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...

  4. bzoj 1492: [NOI2007]货币兑换Cash【贪心+斜率优化dp+cdq】

    参考:http://www.cnblogs.com/lidaxin/p/5240220.html 虽然splay会方便很多,但是懒得写,于是写了cdq 首先要想到贪心的思路,因为如果在某天买入是能得到 ...

  5. BZOJ1492: [NOI2007]货币兑换Cash(CDQ分治,斜率优化动态规划)

    Description 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下 简称B券).每个持有金券的顾客都有一个自己的帐户.金券的数目可以是一个 ...

  6. 【uoj#244】[UER #7]短路 CDQ分治+斜率优化dp

    题目描述 给出 $(2n+1)\times (2n+1)$ 个点,点 $(i,j)$ 的权值为 $a[max(|i-n-1|,|j-n-1|)]$ ,找一条从 $(1,1)$ 走到 $(2n+1,2n ...

  7. BZOJ 1492 [NOI2007]货币兑换Cash (CDQ分治/splay 维护凸包)

    题目大意:太长了略 splay调了两天一直WA弃疗了 首先,我们可以猜一个贪心,如果买/卖,就一定都买/卖掉,否则不买/卖 反正货币的行情都是已知的,没有任何风险,所以肯定要选择最最最优的方案了 容易 ...

  8. bzoj3672/luogu2305 购票 (运用点分治思想的树上cdq分治+斜率优化dp)

    我们都做过一道题(?)货币兑换,是用cdq分治来解决不单调的斜率优化 现在它放到了树上.. 总之先写下来dp方程,$f[i]=min\{f[j]+(dis[i]-dis[j])*p[i]+q[i]\} ...

  9. BZOJ 3963: [WF2011]MachineWorks [CDQ分治 斜率优化DP]

    传送门 当然了WF的题uva hdu上也有 你的公司获得了一个厂房N天的使用权和一笔启动资金,你打算在这N天里租借机器进行生产来获得收益.可以租借的机器有M台.每台机器有四个参数D,P,R,G.你可以 ...

随机推荐

  1. 浏览器关闭后,Session会话结束了么?

    今天想和大家分享一个关于Session的话题: 当浏览器关闭时,Session就被销毁了? 我们知道Session是JSP的九大内置对象(也叫隐含对象)中的一个,它的作用是可以保 存当前用户的状态信息 ...

  2. centos 安装配置 mysql

    安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...

  3. DenseNet

    特点: dense shortcut connections 结构: DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有 ...

  4. Oracle数据库游标精解

    游标 定义:标识结果集中数据行的一种容器(CURSOR),游标允许应用程序对查询语句返回的行结果集中的每一行进行相同或不同的操作,而不是一次对整个结果集进行同一种操作.实际上是一种能从包括多条数据记录 ...

  5. Pandas速查手册中文版

    本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...

  6. JavaScript Cookie使用实例

    # Session-Cookie //  利用Cookie防止在1分钟内多次提交: function SetCookie (name, value) { var Days = 30; var exp ...

  7. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...

  8. MongoDB GridFS 存储大文件

    我们经常会遇到这样的场景:上传/下载文件. 有两种思路可以解决这个问题: (1)将文件存储在服务器的文件系统中: (2)将文件存储在数据库中. 如果我们选择(2),那么我们可以使用MongoDB Gr ...

  9. ubuntu下创建python的虚拟环境

    当我们在同一个机器上进行开发多个项目,每个项目于用到包的不同版本的时候,就很尴尬. 安装python包的命令是: sudo pip install 包名 这样的话,会将包安装到/usr/local/l ...

  10. python的错误处理

    一.python的错误处理 在程序运行的过程中,如果发生了错误,可以事先约定返回一个错误代码,这样,就可以知道是否有错以及出错的原因. 在操作系统提供的调用中,返回错误码非常常见.比如打开文件的函数o ...