java stream 原理

需求
从"Apple" "Bug" "ABC" "Dog"中选出以A开头的名字,然后从中选出最长的一个,并输出其长度

1. 最直白的实现

缺点
  1. 迭代次数过多
  2. 频繁产生中间结果,性能无法接受

2. 平常写法

int longest = 0;
for(String str : strings){
if(str.startsWith("A")){// 1. filter(), 保留以张开头的字符串
int len = str.length();// 2. mapToInt(), 转换成长度
longest = Math.max(len, longest);// 3. max(), 保留最长的长度
}
}
System.out.println(longest);
缺点
  1. 具体业务与算法混在一起,不利于代码复用
  2. 耦合性太强,代码不清晰

3. 责任链模式解耦

public interface Chain {
void proceed(Object object);
}
public class ForChain implements Chain {

    private final Chain chain;

    public ForChain(Chain chain){
this.chain = chain;
} @Override
public void proceed(Object object) {
List<String> list = (List<String>) object;
for(String a : list){
if(a.startsWith("A"))
chain.proceed(a);
}
}
}
public class LengthChain implements Chain {
private final Chain chain; public LengthChain(Chain chain){
this.chain = chain;
}
@Override
public void proceed(Object object) {
String string = (String)object;
chain.proceed(string.length());
}
}
public class ResultChain implements Chain {

    private Integer result = 0;
@Override
public void proceed(Object object) {
Integer integer = (Integer) object;
result = Math.max(integer,result);
} public Integer getResult() {
return result;
}
}
public class Client {

    public static void main(String[] args) {
ResultChain resultChain = new ResultChain();
LengthChain lengthChain = new LengthChain(resultChain);
ForChain forChain = new ForChain(lengthChain);
List<String> list = Arrays.asList("Apple","Bug","ABC","Dog");
forChain.proceed(list);
System.out.println("result is "+ resultChain.getResult());
}
}

4. java stream 实现

OptionalInt max = Stream.of("Apple", "Bug", "ABC", "Dog").
filter(e -> e.startsWith("A")).
mapToInt(e -> e.length()).
max();
System.out.println("result is "+ max.getAsInt());
优点
  1. 开发者是需要关注具体的业务,顶层算法都封装在框架中
  2. 代码结构清晰,代码量少,减少出错的机会

5. Stream 的原理

5.1 stream与集合比较

尽管stream与集合框架在表现上非常相似,二者都是对数据进行处理,但事实上二者完全不同。集合是一种数据结构,主要关注在内存中组织数据,会在一段时间在内存中持续的存在,而流的主要关注在计算,不为数据提供任何存储空间,只会通过管道提供计算结果。

5.2 stream 操作分类

中间操作:返回一个新的stream

  • 有状态:必须等上一步操作完,才能执行下一步操作
  • 无状态:该操作不受上一步操作的影响

终止操作:返回结果

  • 短路:找到即返回
  • 费短路:遍历所有元素

以上操作决定了Stream一定是先构建完毕再执行的特点,也就是延迟执行,当需要结果(终端操作时)开始执行流水线。

5.3 stream 结构示意图

5.4 操作如何记录
  • Head记录起始操作
  • StateLessOp记录中间操作
  • StatefulOp记录有状态的中间操作

这三个操作,在实例化的时候回指向前一个操作,和后一个操作,形成双向链表,每一步操作都能得知上一步和下一步操作。

对于Head:

AbstractPipeline(Spliterator<?> source,
int sourceFlags, boolean parallel) {
this.previousStage = null;
this.sourceSpliterator = source;
this.sourceStage = this;
this.sourceOrOpFlags = sourceFlags & StreamOpFlag.STREAM_MASK;
// The following is an optimization of:
// StreamOpFlag.combineOpFlags(sourceOrOpFlags, StreamOpFlag.INITIAL_OPS_VALUE);
this.combinedFlags = (~(sourceOrOpFlags << 1)) & StreamOpFlag.INITIAL_OPS_VALUE;
this.depth = 0;
this.parallel = parallel;
}

对于其他操作:

AbstractPipeline(AbstractPipeline<?, E_IN, ?> previousStage, int opFlags) {
if (previousStage.linkedOrConsumed)
throw new IllegalStateException(MSG_STREAM_LINKED);
previousStage.linkedOrConsumed = true;
previousStage.nextStage = this; // 构造双向链表
this.previousStage = previousStage; this.sourceOrOpFlags = opFlags & StreamOpFlag.OP_MASK;
this.combinedFlags = StreamOpFlag.combineOpFlags(opFlags, previousStage.combinedFlags);
this.sourceStage = previousStage.sourceStage;
if (opIsStateful())
sourceStage.sourceAnyStateful = true;
this.depth = previousStage.depth + 1;
}

例子:

data.stream()
.filter(x -> x.length() == 2)
.map(x -> x.replace(“三”,”五”))
.sorted()
.filter(x -> x.contains(“五”))
.forEach(System.out::println);

Stage

5.5 操作如何叠加

从终止操作依次构造Sink,如此Sink链构造完成

final <P_IN> Sink<P_IN> wrapSink(Sink<E_OUT> sink) {
Objects.requireNonNull(sink); // 依次构造sink
for ( @SuppressWarnings("rawtypes") AbstractPipeline p=AbstractPipeline.this; p.depth > 0; p=p.previousStage) {
sink = p.opWrapSink(p.previousStage.combinedFlags, sink);
}
return (Sink<P_IN>) sink;
}

sink

  1. 依次调用sink的begin方法,通知sink链数据已准备好
  2. 依次调用sink的accept方法,处理数据
  3. 依次调用sink的end方法,通知数据处理完毕
@Override
final <P_IN> void copyInto(Sink<P_IN> wrappedSink, Spliterator<P_IN> spliterator) {
Objects.requireNonNull(wrappedSink); if (!StreamOpFlag.SHORT_CIRCUIT.isKnown(getStreamAndOpFlags())) {
wrappedSink.begin(spliterator.getExactSizeIfKnown());
spliterator.forEachRemaining(wrappedSink);
wrappedSink.end();
}
else {
copyIntoWithCancel(wrappedSink, spliterator);
}
}

5.6 如何收集结果

对于forEach是不需要收集结果的,对于collect结果保存在最后一个sink中,这样的操作都会提供一个get方法取出数据。终止操作都会实现Supplier的get方法

@Override
public <P_IN> R evaluateSequential(PipelineHelper<T> helper,
Spliterator<P_IN> spliterator) {
return helper.wrapAndCopyInto(makeSink(), spliterator).get();
}
public interface Supplier<T> {

    /**
* Gets a result.
*
* @return a result
*/
T get();
}
interface TerminalSink<T, R> extends Sink<T>, Supplier<R> { }

java stream 原理的更多相关文章

  1. [JavaEE]Java NIO原理图文分析及代码实现

    转http://weixiaolu.iteye.com/blog/1479656 目录: 一.java NIO 和阻塞I/O的区别      1. 阻塞I/O通信模型      2. java NIO ...

  2. Java NIO原理分析

    Java IO 在Client/Server模型中,Server往往需要同时处理大量来自Client的访问请求,因此Server端需采用支持高并发访问的架构.一种简单而又直接的解决方案是“one-th ...

  3. Java NIO原理图文分析及代码实现

    原文: http://weixiaolu.iteye.com/blog/1479656 目录: 一.java NIO 和阻塞I/O的区别      1. 阻塞I/O通信模型      2. java ...

  4. Java NIO原理 图文分析及代码实现

    Java NIO原理图文分析及代码实现 前言:  最近在分析hadoop的RPC(Remote Procedure Call Protocol ,远程过程调用协议,它是一种通过网络从远程计算机程序上请 ...

  5. [源码解析] 当 Java Stream 遇见 Flink

    [源码解析] 当 Java Stream 遇见 Flink 目录 [源码解析] 当 Java Stream 遇见 Flink 0x00 摘要 0x01 领域 1.1 Flink 1.2 Java St ...

  6. Java Stream 源码分析

    前言 Java 8 的 Stream 使得代码更加简洁易懂,本篇文章深入分析 Java Stream 的工作原理,并探讨 Steam 的性能问题. Java 8 集合中的 Stream 相当于高级版的 ...

  7. Java Stream 自定义Collector

    Collector的使用 使用Java Stream流操作数据时,经常会用到各种Collector收集器来进行数据收集. 这里便深入了解一点去了解Collector的工作原理和如何自定义Collect ...

  8. JAVA监听器原理

    http://blog.csdn.net/longyulu/article/details/25054697 JAVA监听器原理 标签: 监听器 2014-05-05 15:40 9070人阅读 评论 ...

  9. Java跨平台原理

    此篇博文主要源自网络xiaozhen的天空的博客:http://xiaozhen1900.blog.163.com/blog/static/1741732572011325111945246/ 1.是 ...

随机推荐

  1. 面向对象设计模式_命令模式(Command)解读

    在.Net框架中很多对象的方法中都会有Invoke方法,这种方法的设计实际是用了设计模式的命令模式, 模式图如下 其核心思路是将Client 向Receiver发送的命令行为进行抽象(ICommand ...

  2. Qt下载地址

    上Qt官网http://www.qt.io/download/想下载Qt,速度很慢,在这里记录下在Qt官网看到的镜像下载地址: 1. 所有Qt版本下载地址: http://download.qt.io ...

  3. Mybatis+Mysql插入数据库返回自增主键id值的三种方法

    一.场景: 插入数据库的值需要立即得到返回的主键id进行下一步程序操作 二.解决方法: 第一种:使用通用mapper的插入方法 Mapper.insertSelective(record): 此方法: ...

  4. ERROR : PHP中错误基础

    1.错误 在进行PHP代码编辑的时候,容易碰到error错误提示,PHP中错误有两种:语法错误.逻辑错误. 2.错误报告类型 Notice : 通知 比如直接使用未定义的变量,这种错误不影响PHP脚本 ...

  5. 【吐槽向】iOS 中的仿射变换

    什么是仿射变换矩阵 CGAffineTransform 实际上就是一个用于绘制 2D 图形的的仿射变换矩阵.仿射变换矩阵用于旋转.缩放.平移.扭曲(skew)在图形上下文中绘制的对象.CGAffine ...

  6. ES6的generator函数

    generator是什么? generator是ES6提供的一种异步编程解决方案,在语法上,可以把它理解为一个状态机,内部封装了多种状态.执行generator,会生成返回一个遍历器对象.返回的遍历器 ...

  7. Go基础之锁的初识

    当我们的程序就一个线程的时候是不需要用到锁的,但是通常我们实际的代码不会是单个线程的,所有这个时候就需要用到锁了,那么关于锁的使用场景主要涉及到哪些呢? 当我们多个线程在读相同的数据的时候则是需要加锁 ...

  8. Redis的安装和部署

    基本知识 1.Redis的数据类型: 字符串.列表(lists).集合(sets).有序集合(sorts sets).哈希表(hashs) 2.Redis和memcache相比的独特之处: (1)re ...

  9. 【SSH/SFTP】SSH协议和SFTP

    [SSH和SFTP] ■ 设置一个只允许访问部分目录的SFTP服务器 由于SSH和SFTP之间的紧密联系,一个SFTP服务器必然会导致开放一定的SSH服务,而SSH的风险显然比SFTP要大一些.自然, ...

  10. Algorithm --> KMP算法

    KMP算法 一.传统字符串匹配算法 /* * 从s中第sIndex位置开始匹配p * 若匹配成功,返回s中模式串p的起始index * 若匹配失败,返回-1 */ ) { ; || p.length( ...