Java 8系列之重新认识HashMap
摘要
HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,例如引入红黑树的数据结构和扩容的优化等。本文结合JDK1.7和JDK1.8的区别,深入探讨
HashMap的结构实现和功能原理。
简介
Java为数据结构中的映射定义了一个接口java.util.Map,此接口主要有四个常用的实现类,分别是HashMap、Hashtable、LinkedHashMap和TreeMap,类继承关系如下图所示:
java.util.map类图
下面针对各个实现类的特点做一些说明:
(1) HashMap:它根据键的hashCode值存储数据,大多数情况下可以直接定位到它的值,因而具有很快的访问速度,但遍历顺序却是不确定的。 HashMap最多只允许一条记录的键为null,允许多条记录的值为null。HashMap非线程安全,即任一时刻可以有多个线程同时写HashMap,可能会导致数据的不一致。如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。
(2) Hashtable:Hashtable是遗留类,很多映射的常用功能与HashMap类似,不同的是它承自Dictionary类,并且是线程安全的,任一时间只有一个线程能写Hashtable,并发性不如ConcurrentHashMap,因为ConcurrentHashMap引入了分段锁。Hashtable不建议在新代码中使用,不需要线程安全的场合可以用HashMap替换,需要线程安全的场合可以用ConcurrentHashMap替换。
(3) LinkedHashMap:LinkedHashMap是HashMap的一个子类,保存了记录的插入顺序,在用Iterator遍历LinkedHashMap时,先得到的记录肯定是先插入的,也可以在构造时带参数,按照访问次序排序。
(4) TreeMap:TreeMap实现SortedMap接口,能够把它保存的记录根据键排序,默认是按键值的升序排序,也可以指定排序的比较器,当用Iterator遍历TreeMap时,得到的记录是排过序的。如果使用排序的映射,建议使用TreeMap。在使用TreeMap时,key必须实现Comparable接口或者在构造TreeMap传入自定义的Comparator,否则会在运行时抛出java.lang.ClassCastException类型的异常。
对于上述四种Map类型的类,要求映射中的key是不可变对象。不可变对象是该对象在创建后它的哈希值不会被改变。如果对象的哈希值发生变化,Map对象很可能就定位不到映射的位置了。
通过上面的比较,我们知道了HashMap是Java的Map家族中一个普通成员,鉴于它可以满足大多数场景的使用条件,所以是使用频度最高的一个。下文我们主要结合源码,从存储结构、常用方法分析、扩容以及安全性等方面深入讲解HashMap的工作原理。
内部实现
搞清楚HashMap,首先需要知道HashMap是什么,即它的存储结构-字段;其次弄明白它能干什么,即它的功能实现-方法。下面我们针对这两个方面详细展开讲解。
存储结构-字段
从结构实现来讲,HashMap是数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的,如下如所示。
hashMap内存结构图
这里需要讲明白两个问题:数据底层具体存储的是什么?这样的存储方式有什么优点呢?
(1) 从源码可知,HashMap类中有一个非常重要的字段,就是 Node[] table,即哈希桶数组,明显它是一个Node的数组。我们来看Node[JDK1.8]是何物。 static class Node<K,V> implements Map.Entry<K,V> {
final int hash; //用来定位数组索引位置 final K key;
V value;
Node<K,V> next; //链表的下一个node
Node(int hash, K key, V value, Node<K,V> next) { ... }
public final K getKey(){ ... }
public final V getValue() { ... }
public final String toString() { ... }
public final int hashCode() { ... }
public final V setValue(V newValue) { ... }
public final boolean equals(Object o) { ... }
}
Node是HashMap的一个内部类,实现了Map.Entry接口,本质是就是一个映射(键值对)。上图中的每个黑色圆点就是一个Node对象。
(2) HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上。例如程序执行下面代码:
map.put("美团","小美");
系统将调用"美团"这个key的hashCode()方法得到其hashCode 值(该方法适用于每个Java对象),然后再通过Hash算法的后两步运算(高位运算和取模运算,下文有介绍)来定位该键值对的存储位置,有时两个key会定位到相同的位置,表示发生了Hash碰撞。当然Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制。
在理解Hash和扩容流程之前,我们得先了解下HashMap的几个字段。从HashMap的默认构造函数源码可知,构造函数就是对下面几个字段进行初始化,源码如下:
int threshold; // 所能容纳的key-value对极限
final float loadFactor;// 负载因子
int modCount;
int size;
首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。
结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。
在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考http://blog.csdn.net/liuqiyao_01/article/details/14475159,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。
这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的 插入、删除、查找等算法。本文不再对红黑树展开讨论,想了解更多红黑树数据结构的工作原理可以参考http://blog.csdn.net/v_july_v/article/details/6105630。
功能实现-方法
HashMap的内部功能实现很多,本文主要从根据key获取哈希桶数组索引位置、put方法的详细执行、扩容过程三个具有代表性的点深入展开讲解。
1. 确定哈希桶数组索引位置
不管增加、删除、查找键值对,定位到哈希桶数组的位置都是很关键的第一步。前面说过HashMap的数据结构是数组和链表的结合,所以我们当然希望这个HashMap里面的元素位置尽量分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,不用遍历链表,大大优化了查询的效率。HashMap定位数组索引位置,直接决定了hash方法的离散性能。先看看源码的实现(方法一+方法二):
方法一:
static final int hash(Object key) { //jdk1.8 & jdk1.7
int h;
// h = key.hashCode() 为第一步取hashCode值
// h ^ (h >>> 16) 为第二步高位参与运算
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
方法二:
static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
return h & (length-1); //第三步取模运算
}
这里的Hash算法本质上就是三步:取key的hashCode值、高位运算、取模运算。对于任意给定的对象,只要它的hashCode()返回值相同,那么程序调用方法一所计算得到的Hash码值总是相同的。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,模运算的消耗还是比较大的,在HashMap中是这样做的:调用方法二来计算该对象应该保存在table数组的哪个索引处。
这个方法非常巧妙,它通过h & (table.length -1)来得到该对象的保存位,而HashMap底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当length总是2的n次方时, h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。在JDK1.8的实现中,优化了高位运算的算法,通过hashCode()的高16位异或低16位实现的:(h = k.hashCode()) ^ (h >>> 16),主要是从速度、功效、质量来考虑的,这么做可以在数组table的length比较小的时候,也能保证考虑到高低Bit都参与到Hash的计算中,同时不会有太大的开销。
下面举例说明下,n为table的长度。
hashMap哈希算法例图
2. 分析HashMap的put方法
HashMap的put方法执行过程可以通过下图来理解,自己有兴趣可以去对比源码更清楚地研究学习。
hashMap put方法执行流程图
①. 判断键值对数组table[i]是否为空或为null,否则执行resize()进行扩容;
②. .根据键值key计算hash值得到插入的数组索引i,如果table[i]==null,直接新建节点添加,转向⑥,如果table[i]不为空,转向③;
③. .判断table[i]的首个元素是否和key一样,如果相同直接覆盖value,否则转向④,这里的相同指的是hashCode以及equals;
⑤.遍历table[j] ,判断链表长度是否大于8 ,大于8的话把链表转换为红黑树,在红黑树中执行插入操作,否则进行链表的插入操作;遍历过程中若发现key已经存在直接覆盖value即可;
⑥插入成功后,判断实际存在的键值对数量size是否超多了最大容量threshold ,如果超过,进行扩容。
JDK1.8HashMap的put方法源码如下:
3.扩容机制
扩容(resize)就是重新计算容量,向HashMap对象里不停的添加元素,而HashMap对象内部的数组无法装载更多的元素时,对象就需要扩大数组的长度,以便能装入更多的元素。当然Java里的数组是无法自动扩容的,方法是使用一个新的数组代替已有的容量小的数组,就像我们用一个小桶装水,如果想装更多的水,就得换大水桶。
我们分析下resize的源码,鉴于JDK1 8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一一些,本质上区别不大,具体区别后文再说。
newTable们j]的引用赋给了e.next ,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在-一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话) , 这一点和dk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
下面举个例子说明下扩容过程。假设了我们的hash算法就是简单的用key mod -下表的大小(也就是数组的长度)。其中的哈希桶数组table的size=2,所以key=3、7、5, put顺序依次为5、7、3。在mod 2以后都冲突在table[1]这里了。这里假设负载因子loadFactor=1 ,即当键值对的实际大小size大于table的实际大小时进行扩容。接下来的三个步骤是哈希桶数组resize成4 ,然后所有的Node重新rehash的过程。
下面我们讲解下JDK1.8做了哪些优化。经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍) ,所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思, n为table的长度,图(a )表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引|位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
在多线程使用场景中,应该尽量避免使用线程不安全的HashMap ,而使用线程安全的
ConcurrentHashMap。那么为什么说HashMap是线程不安全的,下面举例子说明在并发的多线程使用场景中使用HashMap可能造成死循环。代码例子如下(便于理解,仍然使用JDK1.7的环境) :
通过设置断点让线程1和线程2同时debug到transfer方法(3.3小节代码块)的首行。注意此时两个线程已经成功添加数据。放开thread1的断点至transfer方法的 "Entry next=e.next;,"这一行;然后放开线程2的的断点,让线程2进行resize。结果如下图。
线程一被调度回来执行,先是执行newTalbe[j] = e,然后是e = next,导致了e指向了key(7) ,而下一-次循环的next = e.next导致了next指向了key(3)。
HashMap中,如果key经过hash算法得出的数组索引|位置全部不相同,即Hash算法非常好,那样的话, getKey方法的时间复杂度就是O(1),如果Hash算法技术的结果碰撞非常多,假如Hash算极其差,所有的Hash算法结果得出的索引位置-样,那样所有的键值对都集中到一个桶中,或者在一个链表中,或者在一一个红黑树中,时间复杂度分别为O(n)和O(lgn)。鉴于JDK1.8做 了多方面的优化,总体性能优于JDK1.7 ,下面我们从两个方面用例子证明这一点。
为了便于测试,我们先写一个类Key,如下:
这个类复写了equals方法,并且提供了相当好的hashCode函数,任何一个值的hashCode都不会相同,因为直接使用value当做hashcode。为了避免频繁的GC ,我将不变的Key实例缓存了起来,而不是一遍-遍的创建它们。代码如下:
现在开始我们的试验,测试需要做的仅仅是,创建不同size的HashMap(1、10、100、...10000000屏蔽了扩容的情况,代码如下:
假设我们又一一个非常差的Key,它们所有的实例都返回相同的hashCode值。这是使用HashMap最坏的情况。代码修改如下:
(1)扩容是一个特别耗性能的操作,所以当程序员在使用HashMap的时候,估算map的大小,初始化的时候给一个大致的数值,避免map进行频繁的扩容。
(2)负载因子是可以修改的,也可以大于1,但是建议不要轻易修改,除非情况非常特殊。
(4)JDK1.8引入红黑树大程度优化了HashMap的性能。
Java 8系列之重新认识HashMap的更多相关文章
- Java面试系列第3篇-HashMap相关面试题
HashMap是非线程安全的,如果想要用线程安全的map,可使用同步的HashTable或通过Collections.synchronizeMap(hashMap)让HashMap变的同步,或者使用并 ...
- 【集合系列】- 深入浅出分析HashMap
一.摘要 在集合系列的第一章,咱们了解到,Map的实现类有HashMap.LinkedHashMap.TreeMap.IdentityHashMap.WeakHashMap.Hashtable.Pro ...
- Java 集合系列10之 HashMap详细介绍(源码解析)和使用示例
概要 这一章,我们对HashMap进行学习.我们先对HashMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用HashMap.内容包括:第1部分 HashMap介绍第2部分 HashMa ...
- Java 集合系列14之 Map总结(HashMap, Hashtable, TreeMap, WeakHashMap等使用场景)
概要 学完了Map的全部内容,我们再回头开开Map的框架图. 本章内容包括:第1部分 Map概括第2部分 HashMap和Hashtable异同第3部分 HashMap和WeakHashMap异同 转 ...
- Java 集合系列 09 HashMap详细介绍(源码解析)和使用示例
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- Java 集合系列 11 hashmap 和 hashtable 的区别
java 集合系列目录: Java 集合系列 01 总体框架 Java 集合系列 02 Collection架构 Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例 Java ...
- java‘小秘密’系列(三)---HashMap
java'小秘密'系列(三)---HashMap java基础系列 java'小秘密'系列(一)---String.StringBuffer.StringBuilder java'小秘密'系列(二)- ...
- Java基础系列--HashMap(JDK1.8)
原创作品,可以转载,但是请标注出处地址:https://www.cnblogs.com/V1haoge/p/10022092.html Java基础系列-HashMap 1.8 概述 HashMap是 ...
- java集合系列之HashMap源码
java集合系列之HashMap源码 HashMap的源码可真不好消化!!! 首先简单介绍一下HashMap集合的特点.HashMap存放键值对,键值对封装在Node(代码如下,比较简单,不再介绍)节 ...
随机推荐
- 基于VB中WINSOCK控件的网上象棋系统的实现
本文发表在<微型机与应用>杂志2001年第3期. 基于VB中WINSOCK控件的网上象棋系统的实现 马根峰1 , 孙艳2 , 王平1 (1.重庆邮电学院自动化学院,重庆,40006 ...
- [转]高级SQL注入:混淆和绕过
############# [0×00] – 简介[0×01] – 过滤规避(Mysql)[0x01a] – 绕过函数和关键词的过滤[0x01b] – 绕过正则表达式过滤[0×02] – 常见绕过技术 ...
- 【Visual C++】游戏编程学习笔记之一:五毛钱特效之透明和半透明处理
本系列文章由@二货梦想家张程 所写,转载请注明出处. 本文章链接:http://blog.csdn.net/terence1212/article/details/44163799 作者:ZeeCod ...
- OpenCV 闭合轮廓检测
这个好像是骨头什么的,但是要求轮廓闭合,于是对图片进行一下膨胀操作,再次检测轮廓就好了. // A closed contour.cpp : 定义控制台应用程序的入口点. // #include &q ...
- MTK平台 Android4.0.3 定制关机动画
实现效果是这样的,长按电源键弹出关机对话框,选择关机项将呈现关机动画和音乐直到正常关机完毕,下面说说具体思路及实现代码 找到长按电源键控制代码 /frameworks/base/policy/src/ ...
- Media Player Classic - HC 源代码分析 4:核心类 (CMainFrame)(3)
===================================================== Media Player Classic - HC 源代码分析系列文章列表: Media P ...
- Socket层实现系列 — accept()的实现(二)
本文主要分析accept()的阻塞等待和唤醒. 内核版本:3.6 Author:zhangskd @ csdn blog 等待队列 (1)socket的等待队列 /* * @sk_wq: sock w ...
- Android开发技巧——自定义控件之自定义属性
Android开发技巧--自定义控件之自定义属性 掌握自定义控件是很重要的,因为通过自定义控件,能够:解决UI问题,优化布局性能,简化布局代码. 上一篇讲了如何通过xml把几个控件组织起来,并继承某个 ...
- C++之继承
#include <iostream> using namespace std ; class Animal { private: int age ; protected: int id ...
- javascript操作select元素一例
熟悉一下js对select元素的操作,html页面中建立一个form,其中包含一个select元素和submit按钮. 当选择select中某一项时改变其文字,当select中所有项的文字都改变后,重 ...