链接:

https://vjudge.net/problem/POJ-2516

题意:

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

思路:

建图, 但是不能对每个商品同时建图,每个商品矩阵分别建图,同时不满足条件就不要跑费用流了..会T.

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string> #define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL; const int MAXN = 50+10;
const int INF = 1e9; struct Edge
{
int from, to, flow, cap, cost;
Edge(int from, int to, int flow, int cap, int cost)
{
this->from = from;
this->to = to;
this->flow = flow;
this->cap = cap;
this->cost = cost;
}
}; vector<Edge> edges;
vector<int> G[MAXN*MAXN*MAXN];
int Sh[MAXN][MAXN];
int Wo[MAXN][MAXN];
int SumN[MAXN];
int a[MAXN*MAXN];
int Vis[MAXN*MAXN*MAXN], Dis[MAXN*MAXN*MAXN], Pre[MAXN*MAXN*MAXN];
int n, m, k;
int s, t; void AddEdge(int from, int to, int cap, int cost)
{
edges.push_back(Edge(from, to, 0, cap, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
int len = edges.size();
G[from].push_back(len-2);
G[to].push_back(len-1);
} bool SPFA()
{
memset(Dis, MINF, sizeof(Dis));
memset(Vis, 0, sizeof(Vis));
queue<int> que;
Dis[s] = 0;
Vis[s] = 1;
que.push(s);
a[s] = INF;
while (!que.empty())
{
// for (int i = s;i <= t;i++)
// cout << Dis[i] << ' ' ;
// cout << endl;
int u = que.front();
// cout << u << endl;
que.pop();
Vis[u] = 0;
for (int i = 0;i < G[u].size();i++)
{
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && Dis[e.to] > Dis[u]+e.cost)
{
Dis[e.to] = Dis[u]+e.cost;
Pre[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap-e.flow);
if (!Vis[e.to])
{
que.push(e.to);
Vis[e.to] = 1;
}
}
}
}
if (Dis[t] != MINF)
return true;
return false;
} int CostFlow(int &Flow)
{
int cost = 0;
while (SPFA())
{
// cout << 1 << endl;
// int Min = INF;
// for (int i = t;i != s;i = edges[Pre[i]].from)
// Min = min(Min, edges[Pre[i]].cap-edges[Pre[i]].flow);
// cout << Min << endl;
for (int i = t;i != s;i = edges[Pre[i]].from)
{
edges[Pre[i]].flow += a[t];
edges[Pre[i]^1].flow -= a[t];
// Edge &e = edges[Pre[i]], &ee = edges[Pre[i]^1];
// cout << e.from << ' ' << e.to << ' ' << e.flow << ' ' << e.cap << endl;
// cout << ee.from << ' ' << ee.to << ' ' << ee.flow << ' ' << ee.cap << endl;
// cout << endl;
}
cost += a[t]*Dis[t];
Flow += a[t];
}
return cost;
} void Init()
{
for (int i = 0;i <= n+m+1;i++)
G[i].clear();
edges.clear();
} int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
while (~scanf("%d %d %d", &n, &m, &k) && (n+m+k))
{
s = 0, t = n+m+1;
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= k;j++)
scanf("%d", &Sh[i][j]);
}
memset(SumN, 0, sizeof(SumN));
for (int i = 1;i <= m;i++)
{
for (int j = 1;j <= k;j++)
scanf("%d", &Wo[i][j]), SumN[j] += Wo[i][j];
}
int v;
//shop = n*k
//wo = n*k+m*k
int res = 0, sumflow = 0;
bool ok = true;
for (int i = 1;i <= k;i++)
{
Init();
int tmp = 0;
for (int j = 1;j <= n;j++)
{
AddEdge(s, j, Sh[j][i], 0);
tmp += Sh[j][i];
}
if (tmp > SumN[i])
ok = false;
for (int j = 1;j <= n;j++)
{
for (int z = 1;z <= m;z++)
{
scanf("%d", &v);
AddEdge(j, n+z, INF, v);
}
}
for (int j = 1;j <= m;j++)
AddEdge(n+j, t, Wo[j][i], 0);
if (ok)
res += CostFlow(sumflow);
}
if (!ok)
puts("-1");
else
printf("%d\n", res);
} return 0;
}

POJ-2516-Minimum Cost(网络流, 最小费用最大流)的更多相关文章

  1. POJ 2516 Minimum Cost (最小费用最大流)

    POJ 2516 Minimum Cost 链接:http://poj.org/problem?id=2516 题意:有M个仓库.N个商人.K种物品.先输入N,M.K.然后输入N行K个数,每一行代表一 ...

  2. POJ - 2516 Minimum Cost(最小费用最大流)

    1.K种物品,M个供应商,N个收购商.每种物品从一个供应商运送到一个收购商有一个单位运费.每个收购商都需要K种物品中的若干.求满足所有收购商需求的前提下的最小运费. 2.K种物品拆开来,分别对每种物品 ...

  3. Minimum Cost 【POJ - 2516】【网络流最小费用最大流】

    题目链接 题意: 有N个商家它们需要货物源,还有M个货物供应商,N个商家需要K种物品,每种物品都有对应的需求量,M个商家每种物品都是对应的存货,然后再是K个N*M的矩阵表示了K个物品从供货商运送到商家 ...

  4. POJ2516 Minimum Cost(最小费用最大流)

    一开始我把每个店主都拆成k个点,然后建图..然后TLE.. 看题解= =哦,愚钝了,k个商品是独立的,可以分别跑k次最小费用最大流,结果就是k次总和.. #include<cstdio> ...

  5. POJ2516 Minimum Cost【最小费用最大流】

    题意: 有N个客户,M个仓库,和K种货物.已知每个客户需要每种货物的数量,每个仓库存储每种货物的数量,每个仓库运输各种货物去各个客户的单位费用.判断所有的仓库能否满足所有客户的需求,如果可以,求出最少 ...

  6. Minimum Cost(最小费用最大流,好题)

    Minimum Cost http://poj.org/problem?id=2516 Time Limit: 4000MS   Memory Limit: 65536K Total Submissi ...

  7. POJ 2516 Minimum Cost (网络流,最小费用流)

    POJ 2516 Minimum Cost (网络流,最小费用流) Description Dearboy, a goods victualer, now comes to a big problem ...

  8. Poj 2516 Minimum Cost (最小花费最大流)

    题目链接: Poj  2516  Minimum Cost 题目描述: 有n个商店,m个仓储,每个商店和仓库都有k种货物.嘛!现在n个商店要开始向m个仓库发出订单了,订单信息为当前商店对每种货物的需求 ...

  9. POJ 2516 Minimum Cost(最小费用流)

    Description Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his s ...

随机推荐

  1. xshell简单配置(文件上传和下载)

    1.安装lrzsz 1.1直接安装#yum install lrzsz 1.2sudo命令安装#sudo yum install lrzsz -y检查是否安装成功.#rpm -qa |grep lrz ...

  2. Android专项测试监控资源

    版本号 V 1.1.0 Android性能测试分为两类:1.一类为rom版本(系统)的性能测试2.一类为应用app的性能测试(本次主要关注点为app的性能测试) Android的app性能测试包括的测 ...

  3. 【ABAP系列】SAP ABAP MIR7预制凭证BAPI

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP MIR7预制凭 ...

  4. python基础--函数1

    # 一,为什么使用函数 # 1,可以使代码的组织结构清晰,可读性好 # 2,遇到重复的问题可以直接调用函数 # 3,功能扩展时,可直接修改,而无需每处都进行修改. # 二,函数为何物 # 函数对程序员 ...

  5. 使用app.config中的数据对数据库链接信息初始化

    看到别人数据库信息都是在app.config里面设置的,今天来尝试了一下,报了 "System.Configuration.ConfigurationSettings.AppSettings ...

  6. 最小配置启动SQL SERVER,更改SQL Server最大内存大小导致不能启动的解决方法

    如果存在配置问题而无法启动服务器,则可以使用最小配置启动选项来启动 Microsoft SQL Server 实例. 这就是启动选项 -f. 使用最小配置启动 SQL Server 实例会自动将服务器 ...

  7. express 实现我猜你喜欢功能

    工具:利用cookie-parser中间件; 原理: 每次访问某一具体的文章,就表明可能客户端对这类文章感兴趣, 将这类文章的标签添加到cookie里,字段是like; 然后退回到含有 我猜你喜欢模块 ...

  8. honpeyhonepy

    2019.09.15 简历编辑功能: 2019.09.23 爬虫功能(智联招聘) 2.1 AI同步功能 2019.10.08 登录功能(包括普通用户登录.管理员.招聘人员) 2019.11.10 鉴权 ...

  9. React 使用相对于根目录进行引用组件

    在对自己开发的组件中经常会做诸如以下的引用: import genFetchEntryListArgs from '../../../utils/table/genFetchEntryListArgs ...

  10. 简单的物流项目实战,WPF的MVVM设计模式(一)

    新建一个WPF项目,命名为WMS 然后分别新建文件夹,Data,Models,Views,ViewModels,Services,如下图所示 然后通过NuGet安装连个Nuget包,分别为SQLite ...