问题描述

The competitors of Bubble Cup X gathered after the competition and discussed what is the best way to get to know the host country and its cities.

After exploring the map of Serbia for a while, the competitors came up with the following facts: the country has V cities which are indexed with numbers from 1 to V, and there are E bi-directional roads that connect the cites. Each road has a weight (the time needed to cross that road). There are N teams at the Bubble Cup and the competitors came up with the following plan: each of the N teams will start their journey in one of the V cities, and some of the teams share the starting position.

They want to find the shortest time T, such that every team can move in these T minutes, and the number of different cities they end up in is at least K (because they will only get to know the cities they end up in). A team doesn't have to be on the move all the time, if they like it in a particular city, they can stay there and wait for the time to pass.

Please help the competitors to determine the shortest time T so it's possible for them to end up in at least K different cities or print -1 if that is impossible no matter how they move.

Note that there can exist multiple roads between some cities.

输入格式

The first line contains four integers: V, E, N and K (1 ≤  V  ≤  600,  1  ≤  E  ≤  20000,  1  ≤  N  ≤  min(V, 200),  1  ≤  K  ≤  N), number of cities, number of roads, number of teams and the smallest number of different cities they need to end up in, respectively.

The second line contains N integers, the cities where the teams start their journey.

Next E lines contain information about the roads in following format: Ai Bi Ti (1 ≤ Ai, Bi ≤ V,  1 ≤ Ti ≤ 10000), which means that there is a road connecting cities Ai and Bi, and you need Ti minutes to cross that road.

输出格式

Output a single integer that represents the minimal time the teams can move for, such that they end up in at least K different cities or output -1 if there is no solution.

If the solution exists, result will be no greater than 1731311.

样例输入

6 7 5 4

5 5 2 2 5

1 3 3

1 5 2

1 6 5

2 5 4

2 6 7

3 4 11

3 5 3

样例输出

3

样例解释

Three teams start from city 5, and two teams start from city 2. If they agree to move for 3 minutes, one possible situation would be the following: Two teams in city 2, one team in city 5, one team in city 3 , and one team in city 1. And we see that there are four different cities the teams end their journey at.

题目大意

给定一个 v个点 e条边的带权无向图,在图上有 n个人,第 i个人位于点 xi,一个人通过一条边需要花费这条边的边权的时间。

现在每个人可以自由地走。求最短多少时间后满足结束后有人的节点数 ≥ m

解析

观察到最后的答案就是走过的最长时间。那么,这就变成了一个最大值最小的问题,可以用二分答案解决。

二分需要的时间mid。因为最后是至少m做城市有人,所以不妨当做是用m个人去匹配m座城市,那么就变成了一个二分图匹配问题。对于每个人,向他所在的城市在mid时间内可以到达的城市连边,这可以用Floyd求出两两最短路得到。然后二分图匹配,如果匹配数大于等于m说明可行。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 1202
using namespace std;
int v,e,n,m,i,j,k,dis[N][N],g[N][N],pos[N],match[N];
bool vis[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
bool dfs(int x)
{
for(int y=1;y<=v;y++){
if(g[x][y]&&!vis[y]){
vis[y]=1;
if(!match[y]||dfs(match[y])){
match[y]=x;
return 1;
}
}
}
return 0;
}
int hungary()
{
memset(match,0,sizeof(match));
int ans=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
bool check(int x)
{
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++){
for(int j=1;j<=v;j++){
if(dis[pos[i]][j]<=x) g[i][j]=1;
}
}
int ans=hungary();
return (ans>=m);
}
int main()
{
v=read();e=read();n=read();m=read();
for(i=1;i<=n;i++) pos[i]=read();
memset(dis,0x3f,sizeof(dis));
for(i=1;i<=v;i++) dis[i][i]=0;
for(i=1;i<=e;i++){
int u=read(),v=read(),w=read();
dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
for(k=1;k<=v;k++){
for(i=1;i<=v;i++){
for(j=1;j<=v;j++) dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
int l=0,r=1731311,mid,ans=-1;
while(l<=r){
mid=(l+r)/2;
if(check(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
return 0;
}

[CF852D] Exploration plan的更多相关文章

  1. 「CF852D」Exploration Plan

    题目描述 给定一张 \(V\) 个点,\(M\) 条边的边带权无向图,有 \(N\) 个人分布在图上的点上,第 \(i\) 个人在 \(x_i\) 这个点上,定义从一个点走到另一个点的时间为所走的路径 ...

  2. 【BubbleCup X】D. Exploration plan

    这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...

  3. [codeforces 852 D] Exploration Plan 解题报告 (二分+最大匹配)

    题目链接:http://codeforces.com/problemset/problem/852/D 题目大意: 有V个点,N个队伍,E条边,经过每条边有个时间,告诉你初始N个队伍的位置,求至少有K ...

  4. poj 2594 Treasure Exploration (二分匹配)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2 ...

  5. POJ2594 Treasure Exploration

    Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8193   Accepted: 3358 Description Have ...

  6. poj 2594 Treasure Exploration(最小路径覆盖+闭包传递)

    http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total ...

  7. Treasure Exploration(二分最大匹配+floyd)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7455   Accepted: 3 ...

  8. POJ2594 Treasure Exploration(最小路径覆盖)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8550   Accepted: 3 ...

  9. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

随机推荐

  1. 阶段2 JavaWeb+黑马旅游网_15-Maven基础_第1节 基本概念_02maven依赖管理的概念

    传统的web项目jar放在项目中,占用磁盘空间 maven项目里面只保存jar包的坐标.jar包文件都在仓库中.扎包重用都在jar包仓库中.

  2. 本机添加DNS映射

    开发项目时本地进行代码编写测试,需要与服务器主机进行DNS映射. 本地主机添加DNS映射步骤 一:复制备份hosts文件 找到C:\Windows\System32\drivers\etc下的host ...

  3. Cocos2d-X网络编程(1) 网络基本概念

    网络模型 OSI层模型.TCP/IP的层模型如下所示. TCP/IP各层对应的协议如下所示. 通过初步的了解,我知道: IP协议:对应于网络层,是网络层的协议, TCP协议:对应于传输层,是传输层的协 ...

  4. Spoj 2798 Qtree3

    一棵结点为黑色或白色的树,初始都是白色的.有两种操作 1 将一个结点换颜色 2 询问从根到结点u路径上面的第一个黑色点,没有则输出-1 InputIn the first line there are ...

  5. 分享之测试WebService小工具 STORM(转)

    http://www.cnblogs.com/yhuang/archive/2012/04/04/share_storm.html 最近的项目中,一直要使用到WebService,为了测试自己编写的W ...

  6. 将python 2.6 升级到 2.7,及pip安装

    由于CentOS6.5 自带python版本为2.6.6,实际中使用的大多为2.7.x版本.于是手动升级. 查看python的版本 #python -VPython 2.6.6 1.下载Python- ...

  7. CentOS 7.6 RPM 方式安装Oracle19c 后 使用 systemd 的方式设置开机自动启动Oracle数据库

    1. 方法简介: 使用systemd 来进行 oracle数据库的启动和关闭操作. 使用的脚本为 lsnrctl和dbstart 2. 修改事项. 需要先修改一下 oracle 的启动脚本配置: vi ...

  8. C++中操作符重载的概念

    1,下面的复数解决方案是否可行? 1,代码示例: class Comples { public: int a; int b; }; int main() { Complex c1 = {, }; Co ...

  9. 面向对象super 练习

    看代码写结果[如果有错误,则标注错误即可,并且假设程序报错可以继续执行] class Foo(object): a1 = 1 def __init__(self,num): self.num = nu ...

  10. Python入门之 函数

    Python入门之 函数 1.初识函数 1.1 什么是函数? <1> 将某个功能封装到一个空间中就是一个函数 <2> 减少重复代码 1.2 定义函数 def -- python ...