问题描述

The competitors of Bubble Cup X gathered after the competition and discussed what is the best way to get to know the host country and its cities.

After exploring the map of Serbia for a while, the competitors came up with the following facts: the country has V cities which are indexed with numbers from 1 to V, and there are E bi-directional roads that connect the cites. Each road has a weight (the time needed to cross that road). There are N teams at the Bubble Cup and the competitors came up with the following plan: each of the N teams will start their journey in one of the V cities, and some of the teams share the starting position.

They want to find the shortest time T, such that every team can move in these T minutes, and the number of different cities they end up in is at least K (because they will only get to know the cities they end up in). A team doesn't have to be on the move all the time, if they like it in a particular city, they can stay there and wait for the time to pass.

Please help the competitors to determine the shortest time T so it's possible for them to end up in at least K different cities or print -1 if that is impossible no matter how they move.

Note that there can exist multiple roads between some cities.

输入格式

The first line contains four integers: V, E, N and K (1 ≤  V  ≤  600,  1  ≤  E  ≤  20000,  1  ≤  N  ≤  min(V, 200),  1  ≤  K  ≤  N), number of cities, number of roads, number of teams and the smallest number of different cities they need to end up in, respectively.

The second line contains N integers, the cities where the teams start their journey.

Next E lines contain information about the roads in following format: Ai Bi Ti (1 ≤ Ai, Bi ≤ V,  1 ≤ Ti ≤ 10000), which means that there is a road connecting cities Ai and Bi, and you need Ti minutes to cross that road.

输出格式

Output a single integer that represents the minimal time the teams can move for, such that they end up in at least K different cities or output -1 if there is no solution.

If the solution exists, result will be no greater than 1731311.

样例输入

6 7 5 4

5 5 2 2 5

1 3 3

1 5 2

1 6 5

2 5 4

2 6 7

3 4 11

3 5 3

样例输出

3

样例解释

Three teams start from city 5, and two teams start from city 2. If they agree to move for 3 minutes, one possible situation would be the following: Two teams in city 2, one team in city 5, one team in city 3 , and one team in city 1. And we see that there are four different cities the teams end their journey at.

题目大意

给定一个 v个点 e条边的带权无向图,在图上有 n个人,第 i个人位于点 xi,一个人通过一条边需要花费这条边的边权的时间。

现在每个人可以自由地走。求最短多少时间后满足结束后有人的节点数 ≥ m

解析

观察到最后的答案就是走过的最长时间。那么,这就变成了一个最大值最小的问题,可以用二分答案解决。

二分需要的时间mid。因为最后是至少m做城市有人,所以不妨当做是用m个人去匹配m座城市,那么就变成了一个二分图匹配问题。对于每个人,向他所在的城市在mid时间内可以到达的城市连边,这可以用Floyd求出两两最短路得到。然后二分图匹配,如果匹配数大于等于m说明可行。

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#define N 1202
using namespace std;
int v,e,n,m,i,j,k,dis[N][N],g[N][N],pos[N],match[N];
bool vis[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
bool dfs(int x)
{
for(int y=1;y<=v;y++){
if(g[x][y]&&!vis[y]){
vis[y]=1;
if(!match[y]||dfs(match[y])){
match[y]=x;
return 1;
}
}
}
return 0;
}
int hungary()
{
memset(match,0,sizeof(match));
int ans=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
bool check(int x)
{
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++){
for(int j=1;j<=v;j++){
if(dis[pos[i]][j]<=x) g[i][j]=1;
}
}
int ans=hungary();
return (ans>=m);
}
int main()
{
v=read();e=read();n=read();m=read();
for(i=1;i<=n;i++) pos[i]=read();
memset(dis,0x3f,sizeof(dis));
for(i=1;i<=v;i++) dis[i][i]=0;
for(i=1;i<=e;i++){
int u=read(),v=read(),w=read();
dis[u][v]=dis[v][u]=min(dis[u][v],w);
}
for(k=1;k<=v;k++){
for(i=1;i<=v;i++){
for(j=1;j<=v;j++) dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
int l=0,r=1731311,mid,ans=-1;
while(l<=r){
mid=(l+r)/2;
if(check(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
return 0;
}

[CF852D] Exploration plan的更多相关文章

  1. 「CF852D」Exploration Plan

    题目描述 给定一张 \(V\) 个点,\(M\) 条边的边带权无向图,有 \(N\) 个人分布在图上的点上,第 \(i\) 个人在 \(x_i\) 这个点上,定义从一个点走到另一个点的时间为所走的路径 ...

  2. 【BubbleCup X】D. Exploration plan

    这个题首先一眼能看出二分答案…… 毕竟连可爱的边界都给你了. 下面就是怎么check 首先预处理跑一遍floyed,预处理出最短路. 用网络流判断能否达到即可. #include<bits/st ...

  3. [codeforces 852 D] Exploration Plan 解题报告 (二分+最大匹配)

    题目链接:http://codeforces.com/problemset/problem/852/D 题目大意: 有V个点,N个队伍,E条边,经过每条边有个时间,告诉你初始N个队伍的位置,求至少有K ...

  4. poj 2594 Treasure Exploration (二分匹配)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 6558   Accepted: 2 ...

  5. POJ2594 Treasure Exploration

    Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8193   Accepted: 3358 Description Have ...

  6. poj 2594 Treasure Exploration(最小路径覆盖+闭包传递)

    http://poj.org/problem?id=2594 Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total ...

  7. Treasure Exploration(二分最大匹配+floyd)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 7455   Accepted: 3 ...

  8. POJ2594 Treasure Exploration(最小路径覆盖)

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8550   Accepted: 3 ...

  9. 【转】The most comprehensive Data Science learning plan for 2017

    I joined Analytics Vidhya as an intern last summer. I had no clue what was in store for me. I had be ...

随机推荐

  1. Jmeter接口测试系列之测试用例变量参数化处理

    在进行接口测试时,一组完整的接口测试用例,存在后一个测试用例使用前一个用例的请求结果中的数据,此时就需要参数化测试用例中值.直接使用变量调用会存在问题,此时就需要用到beanshell去改变. 举例说 ...

  2. Java多线程学习——wait方法(信号灯法/生产者消费者模式)

    信号灯法:以一个标志位来判断是否执行还是等待 public class TV { private String voice; //内容 private boolean flag=false; //信号 ...

  3. pymysql操作数据库

    pymysql.connect()参数说明:(连接数据库时需要添加的参数)host(str): MySQL服务器地址port(int): MySQL服务器端口号user(str): 用户名passwd ...

  4. kafka学习(三)

    kafka 消费者-从kafka读取数据   消费者和消费者群里 kafka消费者从属于消费者群组.一个群组里的消费者订阅的是同一主题,每个消费者接受主题一部分分区的消息.如果我们往群组里添加更多的消 ...

  5. 20191128 Spring Boot官方文档学习(9.10)

    9.10.数据库初始化 可以使用不同的方式初始化SQL数据库,具体取决于堆栈是什么.当然,如果数据库是一个单独的进程,您也可以手动执行.建议使用单一机制进行模式生成. 9.10.1.使用JPA初始化数 ...

  6. Linux环境安装mongodb

    介绍 上篇介绍了Linux环境下安装Node.js的步骤,紧接着来安装mongodb.另外,推荐我的另一篇 Windows下图文详解Mongodb安装及配置,先在Windows下熟悉下mongodb, ...

  7. Linux 環境下安裝swoole

    一.先安装依赖 yum -y install gcc gcc-c++ autoconf automake yum -y install zlib zlib-devel openssl openssl- ...

  8. linux下安装phpunit

    安装pear 的命令如下: $ wget http://pear.php.net/go-pear.phar $ php go-pear.phar 如果报出PHP Warning:  file_exis ...

  9. spring cloud zuul过滤器修改requestURI 忽略大小写

    通过zuul网关处理requestURI可以做很多事情,如对uri的解密,转发,大小写转化等. 这里对URI做一个简单的大小写的转化. 写一个filter实现ZuulFilter: package c ...

  10. B/S,C/S架构的区别

    B/S架构:browser/server,采用的是浏览器服务器模式. C/S架构:client/server,采用的是客户端服务器模式. B/S架构,客户端是浏览器基本不需要维护,只需要维护升级服务器 ...