Codeforces 364E 分治
题意:给你一个01矩阵,问此矩阵有多少个和恰好为k的子矩形。
思路:分治,对于当前矩形,用一条中线把矩形分成两半,分治之后计算跨过中线的矩形个数。更具体的来说(假设划了一条水平中线),我们枚举矩形左右边界,然后用指针维护一下到中线的连续和为k的边界。之后通过差分就可以计算出对应的左右边界的矩形的贡献数目。对于一个n * m的矩阵,计算贡献的时间复杂度是O(n * (m * k + n))的,带有n * n项,所以计算的时候需要用交替画水平线和竖直线,不然就超时了。总复杂度O(n * m * k * ( log(n) + log(m) ) );
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 2510;
int sum[maxn][maxn];
char s[maxn][maxn];
int n, m, K;
long long ans;
int p1[10], p2[10];
int cal(int x1, int y1, int x2, int y2) {
return sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
}
void div(int x1, int y1, int x2, int y2, bool flag) {
if(x1 > x2 || y1 > y2) return;
if(x1 == x2 && y1 == y2) {
ans += (cal(x1, y1, x2, y2) == K);
return;
}
if(flag) {
int mid = (x1 + x2) >> 1;
div(x1, y1, mid, y2, !flag);
div(mid + 1, y1, x2, y2, !flag);
for (int i = y1; i <= y2; i++) {
for (int k = 0; k <= K; k++) {
p1[k] = mid, p2[k] = mid + 1;
}
for (int j = y2; j >= i; j--) {
for (int k = 0; k <= K; k++) {
while(p1[k] >= x1 && cal(p1[k], i, mid, j) <= k) p1[k]--;
while(p2[k] <= x2 && cal(mid + 1, i, p2[k], j) <= k) p2[k]++;
}
for (int k = 1; k < K; k++) {
ans += (p1[k - 1] - p1[k]) * (p2[K - k] - p2[K - k - 1]);
}
if(K > 0) {
ans += (mid - p1[0]) * (p2[K] - p2[K - 1]);
ans += (p2[0] - mid - 1) * (p1[K - 1] - p1[K]);
} else if(K == 0) {
ans += (mid - p1[0]) * (p2[0] - mid - 1);
}
}
}
}
else {
int mid = (y1 + y2) >> 1;
div(x1, y1, x2, mid, !flag);
div(x1, mid + 1, x2, y2, !flag);
for (int i = x1; i <= x2; i++) {
for (int k = 0; k <= K; k++) {
p1[k] = mid, p2[k] = mid + 1;
}
for (int j = x2; j >= i; j--) {
for (int k = 0; k <= K; k++) {
while(p1[k] >= y1 && cal(i, p1[k], j, mid) <= k) p1[k]--;
while(p2[k] <= y2 && cal(i, mid + 1, j, p2[k]) <= k) p2[k]++;
}
for (int k = 1; k < K; k++) {
ans += (p1[k - 1] - p1[k]) * (p2[K - k] - p2[K - k - 1]);
}
if(K > 0) {
ans += (mid - p1[0]) * (p2[K] - p2[K - 1]);
ans += (p2[0] - mid - 1) * (p1[K - 1] - p1[K]);
} else if(K == 0) {
ans += (mid - p1[0]) * (p2[0] - mid - 1);
}
//printf("%d %d %d %d %d %d\n", x1, y1, x2, y2, 2, ans);
}
}
}
}
int main() {
//freopen("out.txt", "r", stdin);
scanf("%d%d%d", &n, &m, &K);
for (int i = 1; i <= n; i++) {
scanf("%s", s[i] + 1);
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1] + (s[i][j] == '1');
}
div(1, 1, n, m, 0);
printf("%lld\n", ans);
}
Codeforces 364E 分治的更多相关文章
- Pudding Monsters CodeForces - 526F (分治, 双指针)
大意: n*n棋盘, n个点有怪兽, 求有多少边长为k的正方形内恰好有k只怪兽, 输出k=1,...,n时的答案和. 等价于给定n排列, 对于任意一个长为$k$的区间, 若最大值最小值的差恰好为k, ...
- A Story of One Country (Hard) CodeForces - 1181E2 (分治)
大意: 给定$n$个平面上互不相交的矩形. 若一个矩形区域只包含一个矩形或者它可以水平或垂直切成两块好的区域, 那么这个矩形区域是好的. 求判断整个平面区域是否是好的. 分治判断, 可以用链表实现删除 ...
- Codeforces 1039D You Are Given a Tree [根号分治,整体二分,贪心]
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地 ...
- Codeforces Round #190 (Div. 2) E. Ciel the Commander 点分治
E. Ciel the Commander Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/contest ...
- CodeForces 553E Kyoya and Train 动态规划 多项式 FFT 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8847145.html 题目传送门 - CodeForces 553E 题意 一个有$n$个节点$m$条边的有向图 ...
- CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT
原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分 ...
- codeforces 161D Distance in Tree 树上点分治
链接:https://codeforces.com/contest/161/problem/D 题意:给一个树,求距离恰好为$k$的点对是多少 题解:对于一个树,距离为$k$的点对要么经过根节点,要么 ...
- Codeforces 833D Red-Black Cobweb [点分治]
洛谷 Codeforces 思路 看到树上路径的统计,容易想到点分治. 虽然只有一个限制,但这个限制比较麻烦,我们把它拆成两个. 设黑边有\(a\)条,白边有\(b\)条,那么有 \[ 2a\geq ...
- Codeforces 1093E Intersection of Permutations [CDQ分治]
洛谷 Codeforces 思路 一开始想到莫队+bitset,发现要T. 再想到分块+bitset,脑子一抽竟然直接开始写了,当然也T了. 最后发现这就是个裸的CDQ分治-- 发现\(a\)不变,可 ...
随机推荐
- python socket 的理解(1)
前言 socket的用法简单,但里面的概念有点模糊,记录自己本人的一点理解. socket层结构图 注意,从此图中看出socket处于tcp和应用层之间.那么它代表啥意思呢?简明的说,数据的传输都是底 ...
- 【LeetCode】拓扑排序 topological-sort(共5题)
[207]Course Schedule [210]Course Schedule II [269]Alien Dictionary [329]Longest Increasing Path in a ...
- 非阻塞套接字与IO多路复用(转,python实现版)
非阻塞:指在不能立刻得到结果之前,该函数不会阻塞当前线程,而会立刻返回.epoll工作在非阻塞模式时,才会发挥作用. 我们了解了socket之后已经知道,普通套接字实现的服务端的缺陷:一次只能服务一个 ...
- HttpClient测试框架
HttpClient是模拟Http协议客户端请求的一种技术,可以发送Get/Post等请求. 所以在学习HttpClient测试框架之前,先来看一下Http协议请求,主要看请求头信息. 如何查看HTT ...
- jmeter 参数化5_Count 计数器
如果需要引用的数据量较大,且要求不能重复或者需要自增,那么可以使用计数器来实现. 计数器(counter):允许用户创建一个在线程组之内都可以被引用的计数器. 计数器允许用户配置一个起点,一个最大值, ...
- Fiddler的详细介绍
Fiddler的详细介绍 一.Fiddler与其他抓包工具的区别 1.Firebug虽然可以抓包,但是对于分析http请求的详细信息,不够强大.模拟http请求的功能也不够,且firebug常常是需要 ...
- 【RabbitMQ】Concurrency、Prefetch、exclusive
分布式消息中间件 RabbitMQ是用Erlang语言编写的分布式消息中间件,常常用在大型网站中作为消息队列来使用,主要目的是各个子系统之间的解耦和异步处理.消息中间件的基本模型是典型的生产者-消费者 ...
- Angular JS - 9 - SeaJS加载js模块
seajs加载模块的三种方式 1.seajs.use() 加载入口模块,类似于Java的main函数 2.require: 当在一个模块中需要用到其它模块时一般用require加载 1) ...
- windows系统查看端口占用情况
windows系统,经常发现我们需要使用的端口被别的程序占用.但是我们又不知道是被谁占用,那如何查看端口被哪个程序占用呢?在这里就一起看看如何查看某个端口被占用的解决方法. 开始---->运行- ...
- Windows10下安装CentOS7双系统
参考: 参考1 参考2 问题1