「CQOI 2014」危桥
题目链接
\(Solution\)
首先往返\(n\)次等价于走\(2n\)次。
将 \(a_n*2,b_n*2\);
那么我们直接按原图构图,然后:
\((S,a_1,a_n),(S,b_1,b_n),(a_2,T,a_n),(b_2,T,b_n)\)
但直接判断最大流是否等于\(a_n+b_n\)是不对的。因为\(a_2\)可能有来自\(b_1\)的流量,\(b_2\)也有可能有来自\(a_1\)的流量。
所以我们可以将\(b_1\)和\(b_2\)交换再跑一次最大流。如果两次最大流都等于\(a_n+b_n\) 那么有解。
至于证明,将\(a_1->a_2\)的流量设为\(x\)然后在推一下就没了,自己想想吧
\(Code\)
#include<bits/stdc++.h>
#define int long long
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
const int inf=1e12;
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
struct node{
int to,next,v;
}a[200001];
int head[100001],cnt=1,n,m,s,t,x,y,z,dep[100001],a1,a2,an,b1,b2,bn;
void add(int x,int y,int c){
a[++cnt].to=y,a[cnt].next=head[x],a[cnt].v=c,head[x]=cnt;
a[++cnt].to=x,a[cnt].next=head[y],a[cnt].v=0,head[y]=cnt;
}
queue<int> q;
int bfs(){
memset(dep,0,sizeof(dep));
q.push(s);
dep[s]=1;
while(!q.empty()){
int now=q.front();
q.pop();
for(int i=head[now];i;i=a[i].next){
int v=a[i].to;
if(!dep[v]&&a[i].v>0)
dep[v]=dep[now]+1,q.push(v);
}
}
if(dep[t])
return 1;
return 0;
}
int dfs(int k,int list){
if(k==t||!list)
return list;
for(int i=head[k];i;i=a[i].next){
int v=a[i].to;
if(dep[v]==dep[k]+1&&a[i].v>0){
int p=dfs(v,min(list,a[i].v));
if(p){
a[i].v-=p;
a[i^1].v+=p;
return p;
}
}
}
return dep[k]=0;
}
int Dinic(){
int ans=0,k;
while(bfs())
while((k=dfs(s,inf)))
ans+=k;
return ans;
}
char c[101][101];
bool build(){
s=0,t=n+1;
memset(head,0,sizeof(head)),cnt=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
if(c[i][j]=='O')
add(i,j,2);
if(c[i][j]=='N')
add(i,j,inf);
}
add(s,a1,an),add(a2,t,an);
add(s,b1,bn),add(b2,t,bn);
return Dinic()==an+bn;
}
main(){
while(scanf("%d%d%d%d%d%d%d",&n,&a1,&a2,&an,&b1,&b2,&bn)!=EOF){
a1++,a2++,b1++,b2++,an*=2,bn*=2;
for(int i=1;i<=n;i++)
scanf("%s",c[i]+1);
int ans=build();
swap(b1,b2);
ans+=build();
if(ans==2) puts("Yes");
else puts("No");
}
}
「CQOI 2014」危桥的更多相关文章
- 【LOJ】#2239. 「CQOI2014」危桥
LOJ#2239. 「CQOI2014」危桥 就是先把每条边正着连一条容量为2的边,反着连一条容量为2的边 显然如果只有一个人走的话,答案就是一个源点往起点连一条容量为次数×2的边,终点往汇点连一个次 ...
- 「HNOI 2014」 江南乐
\(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...
- 「HNOI 2014」 画框
题目链接 戳我 \(Solution\) 这一题很像最小乘积生成树.只是把\(kruskal\)变为了\(km\)/费用流 现在来讲一讲最小乘积生成树.首先将\(\sum a_i\)和\(\sum b ...
- 「HNOI 2014」米特运输
题目链接 戳我 \(Describe\) 谁出的题目啊?这么长的题面,看完就滚粗了.强烈谴责 给一棵树,每个点有一个权值,要求修改一些权值,使: 一个点的权值必须是其所有儿子的权值之和 一个点的儿子权 ...
- 「BZOJ 3529」「SDOI 2014」数表「莫比乌斯反演」
题意 有一张 \(n\times m\) 的数表,其第\(i\)行第\(j\)列的数值为能同时整除\(i\)和\(j\)的所有自然数之和. \(T\)组数据,询问对于给定的 \(n,m,a\) , 计 ...
- Solution -「POI 2014」「洛谷 P5904」HOT-Hotels 加强版
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的树,求无序三元组 \((u,v,w)\) 的个数,满足其中任意两点树上距离相等. \(n\le1 ...
- 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)
[题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...
- 「JOI 2014 Final」飞天鼠
「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
随机推荐
- java 如何编写多线程的代码
线程是干活的所以线程一定是Thread,或者改线程实现Runnable接口多线程是竞争关系,所以多个线程竞争同一个资源,也就是同一个对象所以这个竞争对象发到Thread中即: // resources ...
- qq 面对面传文件,应用
使用方式:打开qq,点击右上角里面的面对面传 传输内容:应用,文件 好处:不耗流量,快速
- .Net高并发解决思路
转自: 本文如有不对之处,欢迎各位拍砖扶正.另源码在文章最下面,大家下载过后先还原一下nuget包,需要改一下redis的配置,rabbitmq的配置以及Ef的连接字符串.另外使用的是CodeFirs ...
- 学会这 2 点,轻松看懂 MySQL 慢查询日志
MySQL中的日志包括:错误日志.二进制日志.通用查询日志.慢查询日志等等.这里主要介绍下比较常用的两个功能:通用查询日志和慢查询日志. 1)通用查询日志:记录建立的客户端连接和执行的语句. 2)慢查 ...
- Linux之常用脚本
1) #检查php Money 队列脚本是否启动 php_count=`ps -ef | grep Money | grep -v "grep" | wc -l` ];then e ...
- 关于获取jquery对象的长度
/* 17:10 2019/8/6 @author zhangxingshuo jQuery:"write less, do more" homepage: https://jqu ...
- JAVA核心技术--继承(1)
1.继承:向上追溯,对同一批类的抽象,延续和扩展父类的一切信息! 1)关键字:extends 例如,父类是Animal,子类是Dog; eg: public class Dog exte ...
- Linux Exploit系列之二 整数溢出
整数溢出 虚拟机安装:Ubuntu 12.04(x86) 什么是整数溢出? 存储大于最大支持值的值称为整数溢出.整数溢出本身不会导致任意代码执行,但整数溢出可能会导致堆栈溢出或堆溢出,这可能导致任意代 ...
- python cv2截取不规则区域图片
知识掌握 cv2.threshold()函数: 设置固定级别的阈值应用于多通道矩阵,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点. Python: cv2.thresho ...
- java在遍历列表的时候删除列表中某个元素
在遍历list的时候需要删除其中的某些元素,不要用foreach遍历,需要用Iterator. List<String> list = new ArrayList<String> ...