Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng
Course material, problem set Matlab code written by me, my notes about video course:
https://github.com/Yao-Yao/CS229-Machine-Learning
Contents:
- supervised learning
Lecture 1
application field, pre-requisite knowledge
supervised learning, learning theory, unsupervised learning, reinforcement learning
Lecture 2
linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations
Lecture 3
locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron
Lecture 4
Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression
Lecture 5
discriminative vs generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing
Lecture 6
multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin
Lecture 7
optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels
Lecture 8
Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm
- learning theory
Lecture 9
underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound
Lecture 10
VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method
Lecture 11
Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"
- unsupervised learning
Lecture 12
k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality
Lecture 13
co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis
Lecture 14
principal component analysis(PCA), compression, eigen-face
Lecture 15
latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"
- reinforcement learning
Lecture 16
Markov decision process(MDP), Bellman's equations, value iteration, policy iteration
Lecture 17
continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration
Lecture 18
state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project
Lecture 19
"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR
Lecture 20
partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion
Stanford CS229 Machine Learning by Andrew Ng的更多相关文章
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...
随机推荐
- hibernate注意
1.设置id <id name="ID"> <!-- ????????????????? --> <generator class="ide ...
- 使用hash拆分文件
package readImgUrl; import java.io.BufferedInputStream; import java.io.BufferedReader; import java.i ...
- 如何保存 Activity 的状态?
Activity 的状态通常情况下系统会自动保存的,只有当我们需要保存额外的数据时才需要使用到这样的功能.一般来说, 调用 onPause()和 onStop()方法后的 activity 实例仍然存 ...
- 使用ViewPager实现广告自动轮播的效果
package com.loaderman.viewpgerlunbodemo; import android.os.Bundle; import android.os.Handler; import ...
- CSS 有序或者无序列表的前面的标记 list-style-type 属性
例子: <html> <head> <style type="text/css"> ul.none{list-style-type:none} ...
- 【python3】configparser读取ini配置文件
在应用过程中,发现下面这个问题: cf=configparser.ConfigParser()读取配置文件时,如果数据包含%这们析特殊符号,就会报出上面的错误,使用cf = configparser. ...
- iOS发版出现“No iTunes Connect access for the team”的问题的解决方式
要发个新版本,结果发现,老是提示我“No iTunes Connect access for the team”,出现以下错误: 图1 错误提示: No accounts with iTunes ...
- python学习之模块-模块(一)
第五章 5.1 自定义模块 模块概念: 把一些常用的函数放在一个py文件中,这个文件就称之为模块. 模块的意义: 1.方便管理.让程序的解构更加清晰,实现功能的重复使用: 2.提升开发效率 ...
- json,异步加载,时间线
JSON是一种传输数据的格式 JSON.stringify(obj); obj--string JSON.parse(str); string-->obj
- tagged和untagged
tagged和untagged遵循以下五条原则 1. Tagged数据帧 Tagged数据帧 Untagged数据帧 Untagged数据帧 in out in out Tagged端口 原样 ...