CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

Lecture 4

Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

Lecture 14

principal component analysis(PCA), compression, eigen-face

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman's equations, value iteration, policy iteration

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

Stanford CS229 Machine Learning by Andrew Ng的更多相关文章

  1. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

随机推荐

  1. QQ聊天监视器(简易版),可以获取当前QQ进程的聊天窗口内容

    原始出处: https://www.cnblogs.com/Charltsing/p/QQChatsMonitor.html 监视QQ聊天信息有很多种方法,最简易的就是直接抓取聊天窗口内容,一个QQ进 ...

  2. 三十四:数据库之SQLAlchemy外建及四种约束

    使用SQLAlchemy创建外建,只需要在子表的字段中指定此字段的外建是哪个表的哪个字段即可,字段类型需和父表下该字段的类型保持一致 使用ondelete指定约束, 外建约束有以下几种:1.RESTR ...

  3. Centos 搭建DNS服务器

    1:安装DNS服务 yum install bind -y 2:修改/etc/named.conf 配置文件 listen-on port 53 { any; }; listen-on-v6 port ...

  4. Session对象的生命周期(面试题/笔试题)

    创建:第一次执行request.getSession()时创建 销毁: 1)服务器(非正常)关闭时 2)session过期/失效(默认30分钟) 问题:时间的起算点 从何时开始计算30分钟? 从不操作 ...

  5. squid 3.5.2配置文件

    https://www.cnblogs.com/mchina/p/3812190.html 配置文件就加入下面这几句话: cache_mem 64 MB maximum_object_size 4 M ...

  6. harbor无法登陆解决

    添加如下内容 [root@bogon ~]# vi /etc/docker/daemon.json { "registry-mirrors": ["https://wb2 ...

  7. VIM常用操作手册

    VIM常用操作手册 1.多行操作,多行注释,多行取消注释 https://jingyan.baidu.com/article/9c69d48f43ed6d13c8024e7b.html 2.常用操作 ...

  8. 跨域常见解决方案jsonp,cors示例

    ​​ 方案   JSONP jsonp需要后端进行配置,并且前端需要动态生成script标签通过callback调用函数进行操作的跨域解决方案 不建议使用该方案: 前后端均需进行配置处理,增加了工作量 ...

  9. 关于token的理解

    什么是token token的意思是“令牌”,是服务端生成的一串字符串,作为客户端进行请求的一个标识. 当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端只需带上这个 ...

  10. LeetCode.961-2N数组中N次重复的元素(N-Repeated Element in Size 2N Array)

    这是悦乐书的第365次更新,第393篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第227题(顺位题号是961).在大小为2N的数组A中,存在N+1个唯一元素,并且这些元 ...