CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

Lecture 4

Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

Lecture 14

principal component analysis(PCA), compression, eigen-face

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman's equations, value iteration, policy iteration

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

Stanford CS229 Machine Learning by Andrew Ng的更多相关文章

  1. 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera

    Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

    本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction

    本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...

  4. (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines

    本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...

  5. (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems

    这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...

  6. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  7. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...

  8. (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization

    coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...

  9. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

随机推荐

  1. hibernate注意

    1.设置id <id name="ID"> <!-- ????????????????? --> <generator class="ide ...

  2. 使用hash拆分文件

    package readImgUrl; import java.io.BufferedInputStream; import java.io.BufferedReader; import java.i ...

  3. 如何保存 Activity 的状态?

    Activity 的状态通常情况下系统会自动保存的,只有当我们需要保存额外的数据时才需要使用到这样的功能.一般来说, 调用 onPause()和 onStop()方法后的 activity 实例仍然存 ...

  4. 使用ViewPager实现广告自动轮播的效果

    package com.loaderman.viewpgerlunbodemo; import android.os.Bundle; import android.os.Handler; import ...

  5. CSS 有序或者无序列表的前面的标记 list-style-type 属性

    例子: <html> <head> <style type="text/css"> ul.none{list-style-type:none} ...

  6. 【python3】configparser读取ini配置文件

    在应用过程中,发现下面这个问题: cf=configparser.ConfigParser()读取配置文件时,如果数据包含%这们析特殊符号,就会报出上面的错误,使用cf = configparser. ...

  7. iOS发版出现“No iTunes Connect access for the team”的问题的解决方式

    要发个新版本,结果发现,老是提示我“No iTunes Connect access for the team”,出现以下错误:   图1 错误提示: No accounts with iTunes ...

  8. python学习之模块-模块(一)

    第五章 5.1 自定义模块 模块概念: ​ 把一些常用的函数放在一个py文件中,这个文件就称之为模块. 模块的意义: ​ 1.方便管理.让程序的解构更加清晰,实现功能的重复使用: ​ 2.提升开发效率 ...

  9. json,异步加载,时间线

    JSON是一种传输数据的格式 JSON.stringify(obj);  obj--string JSON.parse(str);   string-->obj      

  10. tagged和untagged

    tagged和untagged遵循以下五条原则 1.   Tagged数据帧 Tagged数据帧 Untagged数据帧 Untagged数据帧   in out in out Tagged端口 原样 ...