Stanford CS229 Machine Learning by Andrew Ng
CS229 Machine Learning Stanford Course by Andrew Ng
Course material, problem set Matlab code written by me, my notes about video course:
https://github.com/Yao-Yao/CS229-Machine-Learning
Contents:
- supervised learning
Lecture 1
application field, pre-requisite knowledge
supervised learning, learning theory, unsupervised learning, reinforcement learning
Lecture 2
linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations
Lecture 3
locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron
Lecture 4
Newton's method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression
Lecture 5
discriminative vs generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing
Lecture 6
multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin
Lecture 7
optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels
Lecture 8
Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm
- learning theory
Lecture 9
underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound
Lecture 10
VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method
Lecture 11
Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"
- unsupervised learning
Lecture 12
k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen's inequality
Lecture 13
co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis
Lecture 14
principal component analysis(PCA), compression, eigen-face
Lecture 15
latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"
- reinforcement learning
Lecture 16
Markov decision process(MDP), Bellman's equations, value iteration, policy iteration
Lecture 17
continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration
Lecture 18
state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project
Lecture 19
"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR
Lecture 20
partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion
Stanford CS229 Machine Learning by Andrew Ng的更多相关文章
- 学习笔记之Machine Learning by Andrew Ng | Stanford University | Coursera
Machine Learning by Andrew Ng | Stanford University | Coursera https://www.coursera.org/learn/machin ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example
本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 8) Clustering & Dimensionality Reduction
本周主要介绍了聚类算法和特征降维方法,聚类算法包括K-means的相关概念.优化目标.聚类中心等内容:特征降维包括降维的缘由.算法描述.压缩重建等内容.coursera上面Andrew NG的Mach ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 7) Support Vector Machines
本栏目内容来源于Andrew NG老师讲解的SVM部分,包括SVM的优化目标.最大判定边界.核函数.SVM使用方法.多分类问题等,Machine learning课程地址为:https://www.c ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 9) Anomaly Detection&Recommender Systems
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Linear Regression
Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 在Linear Regression部分出现了一些新的名词,这些名 ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 3) Logistic Regression & Regularization
coursera上面Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 我曾经使用Logistic Regressio ...
- (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction
最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...
随机推荐
- QQ聊天监视器(简易版),可以获取当前QQ进程的聊天窗口内容
原始出处: https://www.cnblogs.com/Charltsing/p/QQChatsMonitor.html 监视QQ聊天信息有很多种方法,最简易的就是直接抓取聊天窗口内容,一个QQ进 ...
- 三十四:数据库之SQLAlchemy外建及四种约束
使用SQLAlchemy创建外建,只需要在子表的字段中指定此字段的外建是哪个表的哪个字段即可,字段类型需和父表下该字段的类型保持一致 使用ondelete指定约束, 外建约束有以下几种:1.RESTR ...
- Centos 搭建DNS服务器
1:安装DNS服务 yum install bind -y 2:修改/etc/named.conf 配置文件 listen-on port 53 { any; }; listen-on-v6 port ...
- Session对象的生命周期(面试题/笔试题)
创建:第一次执行request.getSession()时创建 销毁: 1)服务器(非正常)关闭时 2)session过期/失效(默认30分钟) 问题:时间的起算点 从何时开始计算30分钟? 从不操作 ...
- squid 3.5.2配置文件
https://www.cnblogs.com/mchina/p/3812190.html 配置文件就加入下面这几句话: cache_mem 64 MB maximum_object_size 4 M ...
- harbor无法登陆解决
添加如下内容 [root@bogon ~]# vi /etc/docker/daemon.json { "registry-mirrors": ["https://wb2 ...
- VIM常用操作手册
VIM常用操作手册 1.多行操作,多行注释,多行取消注释 https://jingyan.baidu.com/article/9c69d48f43ed6d13c8024e7b.html 2.常用操作 ...
- 跨域常见解决方案jsonp,cors示例
方案 JSONP jsonp需要后端进行配置,并且前端需要动态生成script标签通过callback调用函数进行操作的跨域解决方案 不建议使用该方案: 前后端均需进行配置处理,增加了工作量 ...
- 关于token的理解
什么是token token的意思是“令牌”,是服务端生成的一串字符串,作为客户端进行请求的一个标识. 当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端只需带上这个 ...
- LeetCode.961-2N数组中N次重复的元素(N-Repeated Element in Size 2N Array)
这是悦乐书的第365次更新,第393篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第227题(顺位题号是961).在大小为2N的数组A中,存在N+1个唯一元素,并且这些元 ...