LOJ-6278-数列分块入门2(分块)
链接:
题意:
给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数。
思路:
分块,用vector维护每个区域的数值,每次通过二分去找满足的值.
每次单个修改时
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#include <assert.h>
#include <iomanip>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 5e4+10;
int a[MAXN], Tag[MAXN];
int Rank[MAXN];
vector<int> Vec[MAXN];
int n, part;
void Re(int pos)
{
Vec[pos].clear();
for (int i = (pos-1)*part+1;i <= min(pos*part, n);i++)
Vec[pos].push_back(a[i]);
sort(Vec[pos].begin(), Vec[pos].end());
}
void Update(int l, int r, int c)
{
for (int i = l;i <= min(r, Rank[l]*part);i++)
a[i] += c;
Re(Rank[l]);
if (Rank[l] != Rank[r])
{
for (int i = (Rank[r]-1)*part+1;i <= r;i++)
a[i] += c;
Re(Rank[r]);
}
for (int i = Rank[l]+1;i <= Rank[r]-1;i++)
Tag[i] += c;
}
int Query(int l, int r, int v)
{
int cnt = 0;
for (int i = l;i <= min(r, Rank[l]*part);i++)
{
if (a[i] + Tag[Rank[i]] < v)
cnt++;
}
if (Rank[l] != Rank[r])
{
for (int i = max((Rank[r]-1)*part+1, l);i <= r;i++)
{
if (a[i]+Tag[Rank[i]] < v)
cnt++;
}
}
for (int i = Rank[l]+1;i <= Rank[r]-1;i++)
cnt += lower_bound(Vec[i].begin(), Vec[i].end(), v-Tag[i])-Vec[i].begin();
return cnt;
}
int main()
{
scanf("%d", &n);
part = sqrt(n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]);
for (int i = 1;i <= n;i++)
{
Rank[i] = (i - 1) / part + 1;
Vec[Rank[i]].push_back(a[i]);
}
for (int i = 1;i <= Rank[n];i++)
sort(Vec[i].begin(), Vec[i].end());
int op, l, r, c;
for (int i = 1;i <= n;i++)
{
scanf("%d %d %d %d", &op, &l, &r, &c);
if (op == 0)
Update(l, r, c);
else
printf("%d\n", Query(l, r, c*c));
}
return 0;
}
LOJ-6278-数列分块入门2(分块)的更多相关文章
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LOJ#6278. 数列分块入门 2
在一个区间上进行操作,一种操作是某个小区间都加上c,另一个查找这个区间内大于c*c的数 我们可以另外开一个数组在保存a中的每个分块内的相对值,然后每次对a加值,并把a的值赋给b,不同的是b内的各个分块 ...
- LOJ 6278 数列分块入门2
[题解] 分块.块内排序.块内二分出第一个大于等于c的数. #include<cstdio> #include<algorithm> #include<cmath> ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...
随机推荐
- 如何利用Nginx的缓冲、缓存优化提升性能
使用缓冲释放后端服务器 反向代理的一个问题是代理大量用户时会增加服务器进程的性能冲击影响.在大多数情况下,可以很大程度上能通过利用Nginx的缓冲和缓存功能减轻. 当代理到另一台服务器,两个不同的连接 ...
- 2018.04.02 matplotlib 图名,图例,轴标签,轴边界,轴刻度,轴刻度标签
import numpy as np import pandas as pd import matplotlib.pyplot as plt df = pd.DataFrame(np.random.r ...
- java:struts2.3框架1(struts2快速配置,各文件之间的关系,基础代码简化版,XML中的通配符)
1.struts2快速配置: A.到http://struts.apache.org下载struts2开发包struts-2.3.32-all.zip B.新建web项目并添加struts2依赖的ja ...
- cocos2dx[3.2](5) 屏幕适配
1.两个分辨率 1.1.窗口分辨率 在AppDelegate.cpp中有个设置窗口分辨率的函数.该函数是设置了我们预想设备的屏幕大小,也就是应用程序窗口的大小. // glView->setFr ...
- mycat是什么?你是怎么理解的?你们公司分库分表的分片规则是什么?搭建mycat环境常用的配置文件有哪些?
1.mycat是什么? 国内最活跃的.性能最好的开源数据库分库分表中间件 一个彻底开源的,面向企业应用开发的大数据库集群 支持事务.ACID.可以替代MySQL的加强版数据库 一个可以视为MySQL集 ...
- Shell 变量详解教程之位置变量与预定义变量
Shell 变量分为3部分,分别是用户自定义变量.位置变量和预定义变量. 一. 自定义变量 那么,什么是变量呢?简单的说,就是让某一个特定字符串代表不固定的内容,用户定义的变量是最普通的Shell ...
- [DS+Algo] 011 哈希
目录 1. hash 函数 2. 哈希表 3. 密码存储 1. hash 函数 关键词 任意长度输入 固定长度输出 特征 理论上输入跟输出并不是一对一 实际使用假定不会出现碰撞或者冲突 常用算法 (M ...
- mysql主要性能监控指标
1.系统mysql的进程数 ps -ef | grep "mysql" | grep -v "grep" | wc –l 2.Slave_running mys ...
- jsp运行环境的安装和配置
1.JDK的安装和配置 1)下载jdk,我下载的是1-jdk-6u26-windows-i586.exe,放在D:\StudySystem\JavaWeb\jdk目录下. 2)安装jdk,直接你下载的 ...
- 洛谷 P1306 斐波那契公约数 题解
题面 结论:gcd(F[n],F[m])=F[gcd(n,m)]; F[n]=a和F[n+1]=b F[n+2]=a+b,F[n+3]=a+2b,…F[m]=F[m?n?1]a+F[m?n]b F[n ...