LOJ-6278-数列分块入门2(分块)
链接:
题意:
给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数。
思路:
分块,用vector维护每个区域的数值,每次通过二分去找满足的值.
每次单个修改时
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
//#include <memory.h>
#include <queue>
#include <set>
#include <map>
#include <algorithm>
#include <math.h>
#include <stack>
#include <string>
#include <assert.h>
#include <iomanip>
#define MINF 0x3f3f3f3f
using namespace std;
typedef long long LL;
const int MAXN = 5e4+10;
int a[MAXN], Tag[MAXN];
int Rank[MAXN];
vector<int> Vec[MAXN];
int n, part;
void Re(int pos)
{
Vec[pos].clear();
for (int i = (pos-1)*part+1;i <= min(pos*part, n);i++)
Vec[pos].push_back(a[i]);
sort(Vec[pos].begin(), Vec[pos].end());
}
void Update(int l, int r, int c)
{
for (int i = l;i <= min(r, Rank[l]*part);i++)
a[i] += c;
Re(Rank[l]);
if (Rank[l] != Rank[r])
{
for (int i = (Rank[r]-1)*part+1;i <= r;i++)
a[i] += c;
Re(Rank[r]);
}
for (int i = Rank[l]+1;i <= Rank[r]-1;i++)
Tag[i] += c;
}
int Query(int l, int r, int v)
{
int cnt = 0;
for (int i = l;i <= min(r, Rank[l]*part);i++)
{
if (a[i] + Tag[Rank[i]] < v)
cnt++;
}
if (Rank[l] != Rank[r])
{
for (int i = max((Rank[r]-1)*part+1, l);i <= r;i++)
{
if (a[i]+Tag[Rank[i]] < v)
cnt++;
}
}
for (int i = Rank[l]+1;i <= Rank[r]-1;i++)
cnt += lower_bound(Vec[i].begin(), Vec[i].end(), v-Tag[i])-Vec[i].begin();
return cnt;
}
int main()
{
scanf("%d", &n);
part = sqrt(n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]);
for (int i = 1;i <= n;i++)
{
Rank[i] = (i - 1) / part + 1;
Vec[Rank[i]].push_back(a[i]);
}
for (int i = 1;i <= Rank[n];i++)
sort(Vec[i].begin(), Vec[i].end());
int op, l, r, c;
for (int i = 1;i <= n;i++)
{
scanf("%d %d %d %d", &op, &l, &r, &c);
if (op == 0)
Update(l, r, c);
else
printf("%d\n", Query(l, r, c*c));
}
return 0;
}
LOJ-6278-数列分块入门2(分块)的更多相关文章
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- LOJ#6278. 数列分块入门 2
在一个区间上进行操作,一种操作是某个小区间都加上c,另一个查找这个区间内大于c*c的数 我们可以另外开一个数组在保存a中的每个分块内的相对值,然后每次对a加值,并把a的值赋给b,不同的是b内的各个分块 ...
- LOJ 6278 数列分块入门2
[题解] 分块.块内排序.块内二分出第一个大于等于c的数. #include<cstdio> #include<algorithm> #include<cmath> ...
- LibreOJ 6278 数列分块入门 2(分块)
题解:非常高妙的分块,每个块对应一个桶,桶内元素全部sort过,加值时,对于零散块O(sqrt(n))暴力修改,然后暴力重构桶.对于大块直接整块加.查询时对于非完整块O(sqrt(n))暴力遍历.对 ...
- LOJ.6284.数列分块入门8(分块)
题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...
- LOJ.6281.数列分块入门5(分块 区间开方)
题目链接 int内的数(也不非得是int)最多开方4.5次就变成1了,所以还不是1就暴力,是1就直接跳过. #include <cmath> #include <cstdio> ...
- LibreOJ 6277 数列分块入门 1(分块)
题解:感谢hzwer学长和loj让本蒟蒻能够找到如此合适的入门题做. 这是一道非常标准的分块模板题,本来用打标记的线段树不知道要写多少行,但是分块只有这么几行,极其高妙. 代码如下: #include ...
- [Libre 6281] 数列分块入门 5 (分块)
水一道入门分块qwq 题面:传送门 开方基本暴力.. 如果某一个区间全部都开成1或0就打上标记全部跳过就行了 因为一个数开上个四五六次就是1了所以复杂度能过233~ code: //By Menteu ...
- LibreOJ 6280 数列分块入门 4(分块区间加区间求和)
题解:分块的区间求和比起线段树来说实在是太好写了(当然,复杂度也高)但这也是没办法的事情嘛.总之50000的数据跑了75ms左右还是挺优越的. 比起单点询问来说,区间询问和也没有复杂多少,多开一个su ...
- LibreOJ 6281 数列分块入门 5(分块区间开方区间求和)
题解:区间开方emmm,这马上让我想起了当时写线段树的时候,很显然,对于一个在2^31次方以内的数,开方7-8次就差不多变成一了,所以我们对于每次开方,如果块中的所有数都为一了,那么开方也没有必要了. ...
随机推荐
- Unity3D 打包成Exe文件
Unity发布后一般都会一个exe文件和_data文件以及UnityPlayer.dll,如果把这三个文件整合成一个exe就可以(装逼)了 首先打开Winrar将这三个压缩: 压缩文件名设置为需要启动 ...
- Kafka集群搭建和配置
Kafka配置优化 https://www.jianshu.com/p/f62099d174d9 1.安装&配置 下载tar包 解压后即可使用 修改配置文件 将server.propertie ...
- Altera DDR2 IP核学习总结2-----------DDR2 IP核的生成
打开IP核工具,然后选择Verilog HDL选项,填写路径,写入文件名DDR2_IP.V,点击next PLL reference clock frequency填入板子晶振的频率50MHZ,这里设 ...
- oracle分页排序,点击下一页数据不刷新
oracle数据库中,如果每一页的最后一条和次页第一条数据的排序字段重复,会导致排序混乱,出现点击下一页数据不刷新的现象,所以一般排序至少选择一个相对唯一的字段.在前端页面可以输入排序条件的场景中,最 ...
- 模板变量设置 set 和 with
from flask import Flask,render_template app = Flask(__name__) @app.route('/') def hello_world(): ret ...
- python 有参数的装饰器
怎么样为装饰器加参数 import time current_user = {'user':None} def auth(engine = "file") def deco(fun ...
- LPVOID 指针 转 int
1 DWORD WINAPI SockUDP::RecvThread(LPVOID lparam){ //套接字 正确:int sock= *(int*)(lparam); 错误:int ...
- excel常用公式--时间序列类
year,month,day:返回对应于某个日期的年月日.Year作为1900 - 9999之间的整数返回. weekday:返回对应于某个日期的一周中的第几天. WEEKNUM:返回特定日期的周数. ...
- Linux中安装配置KVM虚拟化
KVM 概述: KVM 即 Kernel-based Virtual Machine 基于内核的虚拟机. KVM,是一个开源的系统虚拟化模块,自 Linux 2.6.20 之后集成在 Linux 的各 ...
- CentOS 上面 恢复 Oracle 数据库实例的简单操作流程
1. 当获取了数据库的备份可以进行 oracle数据库的备份恢复操作 linux上面要复杂一些. 这里面简单描述一下. 2. 远程连接 linux 主要工具可以选择 xshell 如图示: 3. 建议 ...