算法——二进制解决N皇后(超级酷炫o((>ω< ))o
先贴代码:
public class Solution { void NQueen(int N, int row, int col, int pie, int na, int[] res) {
if (row == N) {
res[0]++;
return;
}int bits = (~(col | pie | na))&((1<<N)-1);
while (bits > 0) {
int p = bits&(-bits);
NQueen(N, row+1, col|p, (pie|p)<<1, (na|p)>>1, res);
bits &=(bits-1);
}
} public int totalNQueens(int n) {
int[] res = new int[1];
NQueen(n, 0, 0, 0, 0, res);
return res[0];
} public static void main(String[] args) {
Solution s = new Solution();
System.out.println(s.totalNQueens(4));
}
}
这里稍微解释一下:
int bits = (~(col | pie | na))&((1<<N)-1);
//这句的用处是获得当前行能放皇后的位置(比特位来表示,1表示能放皇后,2表示不能) col pie na 中的比特位1表示有皇后攻击 0表示没有皇后攻击。
三个数取或运算得到所有被攻击的位置,取反后与棋盘长度做与运算将棋盘长度外的比特位置零;
int p = bits&(-bits);
//这句话得到了bits中末尾的1的位置对应的整数,换句话说,其实就是打算从右到左取比特位为1的位置进行递归;
bits &=(bits-1);
//上一步已经把最左边的位置进行了递归,所以这次就要把最左边这个比特位的1踢掉,准备下一次while循环
算法——二进制解决N皇后(超级酷炫o((>ω< ))o的更多相关文章
- 使用NestedScrollView+ViewPager+RecyclerView+SmartRefreshLayout打造酷炫下拉视差效果并解决各种滑动冲突
使用NestedScrollView+ViewPager+RecyclerView+SmartRefreshLayout打造酷炫下拉视差效果并解决各种冲突 如果你还在为处理滑动冲突而发愁,那么你需要静 ...
- 回溯算法——解决n皇后问题
所谓回溯(backtracking)是通过系统地搜索求解问题的方法.这种方法适用于类似于八皇后这样的问题:求得问题的一个解比较困难,但是检查一个棋局是否构成解很容易. 不多说,放上n皇后的回溯问题代码 ...
- Android常用酷炫控件(开源项目)github地址汇总
转载一个很牛逼的控件收集帖... 第一部分 个性化控件(View) 主要介绍那些不错个性化的 View,包括 ListView.ActionBar.Menu.ViewPager.Gallery.Gri ...
- 使用 QuickBI 搭建酷炫可视化分析
随着各行各业大数据的渗透,BI 类数据分析需求与日俱增,如何让可视化更好的展现数据的价值,是 BI 类产品一直努力的方向.对此国内外的BI产品都有自己的方法,如国外大牌的 PowerBI.Tablea ...
- html5+Canvas实现酷炫的小游戏
最近除了做业务,也在尝试学习h5和移动端,在这个过程中,学到了很多,利用h5和canvas做了一个爱心鱼的小游戏.点这里去玩一下 PS: 貌似有点闪屏,亲测多刷新两下就好了==.代码在本地跑都不会闪, ...
- MVC中使用SignalR打造酷炫实用的即时通讯功能附源码
前言,现在这世道写篇帖子没个前言真不好意思发出来.本贴的主要内容来自于本人在之前项目中所开发的一个小功能,用于OA中的即时通讯.由于当时走的太急,忘记把代码拿出来.想想这已经是大半年前的事情了,时间过 ...
- 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)
八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉? 看到这个问题,最容易想 ...
- IntelliJ IDEA(九) :酷炫插件系列
最近项目比较忙,很久没有更新IDEA系列了,今天介绍一下IDEA的一些炫酷的插件,IDEA强大的插件库,不仅能给我们带来一些开发的便捷,还能提高我们的与众不同. 1.插件的安装 打开setting文件 ...
- 多种解法解决n皇后问题
多种解法解决n皇后问题 0x1 目的 深入掌握栈应用的算法和设计 0x2 内容 编写一个程序exp3-8.cpp求解n皇后问题. 0x3 问题描述 即在n×n的方格棋盘上,放置n个皇后,要求每 ...
随机推荐
- java:LeakFilling(Hibernate)
1.关系型数据库: Oracle / Mysql 数据持久化的技术: IO JDBC XML ... 主流的持久层框架: Hibernate mybatis---->apache产品 JPA( ...
- CTF—攻防练习之ssh私钥泄露
攻防练习1 ssh私钥泄露 靶场镜像:链接: https://pan.baidu.com/s/1xfKILyIzELi_ZgUw4aXT7w 提取码: 59g0 首先安装打开靶场机 没办法登录,也没法 ...
- 【Ruby on Rails 学习五】Ruby语言的方法
1.方法的调用 2.自定义方法 3.带默认值的自定义方法 4.带返回值的自定义方法 方法或者说是函数,实际上是包含了一段代码,去执行某一个特定的过程. def add(a=3,b=2) return ...
- IntelliJ IDEA将导入的项目转成maven项目
今天导入公司的maven项目,发现结构不对劲,难怪说为啥一直不能部署tomcat,后面百度才了解到导入这个项目还不是maven项目,首先需要把这个项目变成maven项目,然后再进行tomcat的部署下 ...
- ios模拟器快捷键
shift+cmd+h 返回桌面 cmd+5或者4或者3 可以直接调节大小 cmd+R运行项目 cmd+R弹出键盘 ios模拟器弹出键盘 在xcode6中, 模拟器中的键盘和电脑的键盘可以进行绑定 ...
- Oracle中的=:
dept_code=:dCode =:在这里的意思是变量绑定
- Python常用方法库备忘(一)_当前路径下文件夹和文件
#!/usr/bin/env python # -*- coding:utf-8 -*- # --------------*-------------- # @Author : AilF # @Tim ...
- 小记---------Elasticsear搭建
Elasticsear搭建 创建用户: useradd elasticsearch passwd elasticsearch 1.解压 tar -zxvf elasticsearch-5.5.2. ...
- python正则表达式re 中m.group和m.groups的解释
转载:http://www.cnblogs.com/kaituorensheng/archive/2012/08/20/2648209.html 先看代码instance: >>> ...
- Packet flow in l2(receive and transmit)
Receive 1. napi && none napi 讲网络收报过程,必然要涉及到网卡收报模型发展历史.总体上看,网络收报过经历了如下发展过程: 轮询 ---à 中断 ---à ...