128、TensorFlow元数据MetaData
#tf.Session.run也接收一个可选的参数options
#能够让你来配置训练时的参数
#run_metadata参数让你能够收集关于训练的元信息
#列如你可以使用这些可选项来追踪执行的信息
import tensorflow as tf
y = tf.matmul([[37.0, -23.0], [1.0, 4.0]], tf.random_uniform([2, 2]))
with tf.Session() as sess:
# Define options for the sess.run() call
options = tf.RunOptions()
options.output_partition_graphs = True
options.trace_level = tf.RunOptions.FULL_TRACE # Define a container for the returned metadata
metadata = tf.RunMetadata() sess.run(y, options=options, run_metadata=metadata) # Print the subgraphs that executed on each device
print(metadata.partition_graphs) # Print the timings of each operation that executed
print(metadata.step_stats)
下面是输出的结果:
2018-02-17 11:12:58.518912: I C:\tf_jenkins\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
[node {
name: "MatMul/a"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 2
}
dim {
size: 2
}
}
tensor_content: "\000\000\024B\000\000\270\301\000\000\200?\000\000\200@"
}
}
}
}
node {
name: "random_uniform/shape"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 2
}
}
tensor_content: "\002\000\000\000\002\000\000\000"
}
}
}
}
node {
name: "random_uniform/RandomUniform"
op: "RandomUniform"
input: "random_uniform/shape"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 0
}
}
attr {
key: "seed2"
value {
i: 0
}
}
}
node {
name: "random_uniform/sub"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
tensor_content: "\000\000\200?"
}
}
}
}
node {
name: "random_uniform/mul"
op: "Mul"
input: "random_uniform/RandomUniform"
input: "random_uniform/sub"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "random_uniform/min"
op: "Const"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "random_uniform"
op: "Add"
input: "random_uniform/mul"
input: "random_uniform/min"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
}
node {
name: "MatMul"
op: "MatMul"
input: "MatMul/a"
input: "random_uniform"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "transpose_a"
value {
b: false
}
}
attr {
key: "transpose_b"
value {
b: false
}
}
}
node {
name: "_retval_MatMul_0_0"
op: "_Retval"
input: "MatMul"
device: "/job:localhost/replica:0/task:0/device:CPU:0"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "index"
value {
i: 0
}
}
}
library {
}
versions {
producer: 24
}
]
dev_stats {
device: "/job:localhost/replica:0/task:0/device:CPU:0"
node_stats {
node_name: "_SOURCE"
all_start_micros: 1518837178526738
op_start_rel_micros: 12
op_end_rel_micros: 12
all_end_rel_micros: 21
memory {
allocator_name: "cpu"
}
timeline_label: "_SOURCE = NoOp()"
scheduled_micros: 1518837178526691
memory_stats {
}
}
node_stats {
node_name: "MatMul/a"
all_start_micros: 1518837178526765
op_end_rel_micros: 5
all_end_rel_micros: 7
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocator_name: "cpu"
ptr: 1903518068800
}
}
}
timeline_label: "MatMul/a = Const()"
scheduled_micros: 1518837178526759
memory_stats {
host_persistent_memory_size: 16
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/shape"
all_start_micros: 1518837178526773
op_start_rel_micros: 1
op_end_rel_micros: 2
all_end_rel_micros: 2
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_INT32
shape {
dim {
size: 2
}
}
allocation_description {
requested_bytes: 8
allocator_name: "cpu"
ptr: 1903518066368
}
}
}
timeline_label: "random_uniform/shape = Const()"
scheduled_micros: 1518837178526772
memory_stats {
host_persistent_memory_size: 8
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/sub"
all_start_micros: 1518837178526780
op_end_rel_micros: 1
all_end_rel_micros: 1
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
}
allocation_description {
requested_bytes: 4
allocator_name: "cpu"
ptr: 1903518066240
}
}
}
timeline_label: "random_uniform/sub = Const()"
scheduled_micros: 1518837178526775
memory_stats {
host_persistent_memory_size: 4
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/min"
all_start_micros: 1518837178526782
op_end_rel_micros: 1
all_end_rel_micros: 2
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
}
allocation_description {
requested_bytes: 4
allocator_name: "cpu"
ptr: 1903518069120
}
}
}
timeline_label: "random_uniform/min = Const()"
scheduled_micros: 1518837178526781
memory_stats {
host_persistent_memory_size: 4
host_persistent_tensor_alloc_ids: -1
}
}
node_stats {
node_name: "random_uniform/RandomUniform"
all_start_micros: 1518837178526785
op_start_rel_micros: 1
op_end_rel_micros: 11
all_end_rel_micros: 12
memory {
allocator_name: "cpu"
total_bytes: 16
peak_bytes: 16
live_bytes: 16
allocation_records {
alloc_micros: 1518837178526792
alloc_bytes: 16
}
allocation_records {
alloc_micros: 1518837178526870
alloc_bytes: -16
}
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
has_single_reference: true
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform/RandomUniform = RandomUniform(random_uniform/shape)"
scheduled_micros: 1518837178526776
memory_stats {
}
}
node_stats {
node_name: "random_uniform/mul"
all_start_micros: 1518837178526798
op_start_rel_micros: 1
op_end_rel_micros: 11
all_end_rel_micros: 12
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform/mul = Mul(random_uniform/RandomUniform, random_uniform/sub)"
scheduled_micros: 1518837178526797
memory_stats {
}
}
node_stats {
node_name: "random_uniform"
all_start_micros: 1518837178526812
op_end_rel_micros: 8
all_end_rel_micros: 9
memory {
allocator_name: "cpu"
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
ptr: 1903518118336
}
}
}
timeline_label: "random_uniform = Add(random_uniform/mul, random_uniform/min)"
scheduled_micros: 1518837178526810
memory_stats {
}
}
node_stats {
node_name: "MatMul"
all_start_micros: 1518837178526823
op_end_rel_micros: 45
all_end_rel_micros: 47
memory {
allocator_name: "cpu"
total_bytes: 16
peak_bytes: 16
live_bytes: 16
allocation_records {
alloc_micros: 1518837178526826
alloc_bytes: 16
}
}
output {
tensor_description {
dtype: DT_FLOAT
shape {
dim {
size: 2
}
dim {
size: 2
}
}
allocation_description {
requested_bytes: 16
allocated_bytes: 16
allocator_name: "cpu"
allocation_id: 1
has_single_reference: true
ptr: 1903518061312
}
}
}
timeline_label: "MatMul = MatMul(MatMul/a, random_uniform)"
scheduled_micros: 1518837178526821
memory_stats {
}
}
node_stats {
node_name: "_retval_MatMul_0_0"
all_start_micros: 1518837178526872
op_start_rel_micros: 1
op_end_rel_micros: 3
all_end_rel_micros: 5
memory {
allocator_name: "cpu"
}
timeline_label: "_retval_MatMul_0_0 = _Retval(MatMul)"
scheduled_micros: 1518837178526870
memory_stats {
}
}
}
128、TensorFlow元数据MetaData的更多相关文章
- WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[扩展篇]
原文:WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[扩展篇] 通过<实现篇>对WSDL元素和终结点三要素的之间的匹配关系的介绍,我们知道了WSDL的Binding ...
- WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[实现篇]
原文:WCF技术剖析之二十六:如何导出WCF服务的元数据(Metadata)[实现篇] 元数据的导出就是实现从ServiceEndpoint对象向MetadataSet对象转换的过程,在WCF元数据框 ...
- 数据库元数据MetaData
本篇介绍数据库方面的元数据(MetaData)的有关知识.元数据在建立框架和架构方面是特别重要的知识,再下一篇我们仿造开源数据库工具类DbUtils就要使用数据库的元数据来创建自定义JDBC框架. 在 ...
- 【收藏】关于元数据(Metadata)和元数据管理,这是我的见过最全的解读!
本文主要从元数据的定义.作用.元数据管理现状.管理标准和元数据管理功能等方面讲述了我对元数据(Metadata)和元数据管理的认知及理解. 元数据管理 一.元数据的定义 按照传统的定义,元数据(Met ...
- 元数据metadata 对IO有多大影响
日志文件系统(journaling file systems)可防止系统崩溃时导致的数据不一致问题.对文件系统元数据(metadata)的更改都被保存在一份单独的日志里,当发生 系统崩溃时可以根据日志 ...
- 元数据(meta-data)
本章所介绍的元数据的知识,可能在定制系统时会用到.因为那是后需要修改底层框架的一些内容 一.元数据的定义 在AndroidManifest.xml中如下书写: <activity android ...
- 元数据Metadata
元数据是什么? 元数据(Metadata),又称中介数据.中继数据,为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置.历史数据. ...
- 元数据MetaData(五)
JDBC的元数据接口有: DatabaseMetaData数据库级 ResultSetMetaData结果集级 一.DatabaseMetaData 在对数据源进行连接以后,得到一个Connectio ...
- Android MediaMetadataRetriever 读取多媒体文件信息,元数据(MetaData)
音乐播放器通常需要获取歌曲的专辑.作者.标题.年代等信息,将这些信息显示到UI界面上. 1.一种方式:解析媒体文件 命名空间:android.media.MediaMetadataRetrieve ...
随机推荐
- jenkins 启动报错
daemon: fatal: refusing to execute unsafe program: /usr/java/jdk1.8.0/bin/java (/usr/java/jdk1.8.0/b ...
- [Python3 填坑] 008 索引君的朋友 in
目录 1. print( 坑的信息 ) 2. 开始填坑 (1) 前情提要 (2) 索引君的朋友 in 上线 (3) 既然说了 in,不妨再说一说 not in (4) 一些补充 1. print( 坑 ...
- QT 5.12安装
QT 5.12为最新的LTS版本,将通过该版本开始QT的学习 1.软件下载 QT5.12下载地址:http://download.qt.io/archive/qt/5.12/ 当前最新版本为5.12. ...
- Excel VBA批量处理寸照名字
需求:因为处理学生学籍照片,从照相馆拿回来的寸照是按班级整理好,文件名是相机编号的文件.那么处理的话,是这么一个思路,通过Excel表格打印出各班A4照片列表,让学生自行填上照片对应姓名.表格收回来后 ...
- 哪吒票房超复联4,100行python代码抓取豆瓣短评,看看网友怎么说
<哪吒之魔童降世>这部国产动画巅峰之作,上映快一个月时间,票房口碑双丰收. 迄今已有超一亿人次观看,票房达到42.39亿元,超过复联4,跻身中国票房纪录第三名,仅次于<战狼2> ...
- <meta>标签中http-equiv属性的属性值X-UA-Compatible详解
X-UA-Compatible是针对IE8新加的一个设置,对于IE8之外的浏览器是不识别的,这个区别与content="IE=7"在无论页面是否包含<!DOCTYPE> ...
- POJ-3468 A Simple Problem with Integers (区间求和,成段加减)
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...
- 解决Vscode编辑器不能打开多标签页问题
问题描述:编辑代码时,初用vscode,不能打开多个文件:每打开一个文件,都会替换前面一个文件标签,很不方便切换编码: 想要的效果: 解决方式: 方法一: 找到setting.json文件,最外层花括 ...
- android中两个不同名称的app不能同时安装
---恢复内容开始--- 两个app,第一个安装后,再安装第二个,会提示安装包损坏或者一切其他问题,但是这个安装包在别的手机可以正常安装,可以是因为以下问题 两个app中,包含有相同名称的provid ...
- 日志处理--高效Linux命令整理
序 在学习使用python处理日志开始阶段,对我阻力最大的莫过于对linux的不熟悉了,有种寸步难行的感觉. 在之后乱学一通之后,发现有点对我颇有益处: 学<鸟哥linux私房菜基础学习篇> ...