题目:https://loj.ac/problem/2721

1.注意别一输入 p[ i ] 就 a[ i ] %= p[ i ] ,因为在 multiset 里找的时候还需要真实值。

2.注意用 multiset 。并且,因为要 upper_bound( a[ i ] ) ,而 a[ i ] 是一个 long long 类型的,所以即使 multiset 里装的都是 int 类型的,也得开成 long long 的 multiset 。

3.注意除了同余的限制,还有一个是 \( x*c_i >= a_i \) (\(c_i\)就是对应剑的攻击力);只需要在最后用所有 p 的 lcm 调整一下即可。

4.注意要用大数乘法……再各种地方都要注意是否可以直接乘。

别写错扩展 CRT ,特别是 x 乘上 r/g 那个部分。

不太明白为了最后的 x 是最小正整数,是否需要让中间过程中的每个 x 都是最小正整数。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
#define ll long long
using namespace std;
ll rdn()
{
ll ret=;bool fx=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')fx=;ch=getchar();}
while(ch>=''&&ch<='')ret=ret*+ch-'',ch=getchar();
return fx?ret:-ret;
}
ll Mx(ll a,ll b){return a>b?a:b;}
const int N=1e5+;
int n,m,atk[N]; ll a[N],p[N],lm; bool fg;
struct Node{
ll a,p;
Node(ll a=,ll p=):a(a),p(p) {}
};
multiset<ll> st;//multiset not set!!!!!!
ll Mul(ll a,ll b,ll mod)
{
ll d=(ll)floor((double)a*b/mod+0.5);
ll ret=a*b-d*mod; if(ret<)ret+=mod; return ret;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return a;}
ll ret=exgcd(b,a%b,y,x); y-=a/b*x; return ret;
}
void init()
{
for(int i=;i<=n;i++)a[i]=rdn();
for(int i=;i<=n;i++)p[i]=rdn()/*,a[i]%=p[i]*/;//for set
for(int i=;i<=n;i++)atk[i]=rdn();
st.clear(); lm=;/////////////
for(int i=,d;i<=m;i++)
d=rdn(),st.insert(d);
multiset<ll>::iterator it,it2;
ll d,x,y;
for(int i=;i<=n;i++)
{
it=st.upper_bound(a[i]);///for here <ll> not <int>
if(it!=st.begin())it--;
d=(*it); st.erase(it); st.insert(atk[i]);
ll g=exgcd(d,p[i],x,y);
a[i]/=g; p[i]/=g; d/=g;///
lm=Mx(lm,(ll)ceil((double)a[i]/d));//
a[i]=Mul(a[i],x,p[i]);///
}
}
Node cal(Node u,Node v)
{
ll a=u.p, b=v.p, r=v.a-u.a, x,y;
ll g=exgcd(a,b,x,y);
if(r%g){ fg=;return Node(,);}
a/=g; b/=g; r/=g;
x=Mul(x,r,b);///////
y=a*b*g; x=(u.a+Mul(x,u.p,y))%y;
return Node(x,y);
}
int main()
{
freopen("dragon.in","r",stdin);
freopen("dragon.out","w",stdout);
int T=rdn();
while(T--)
{
n=rdn();m=rdn(); fg=; init();
if(fg){puts("-1");continue;}
Node cr=Node(a[],p[]);
if(fg){puts("-1");continue;}
for(int i=;i<=n;i++)
{
cr=cal(cr,Node(a[i],p[i]));
if(fg){ puts("-1");break;}
}
if(fg)continue;
if(cr.a<lm)
{
ll k=ceil((double)(lm-cr.a)/cr.p);
cr.a+=k*cr.p;
}
if(!fg)printf("%lld\n",cr.a);
}
return ;
}

LOJ 2721 「NOI2018」屠龙勇士——扩展中国剩余定理的更多相关文章

  1. loj#2721. 「NOI2018」屠龙勇士

    题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...

  2. LOJ #2721. 「NOI2018」屠龙勇士(set + exgcd)

    题意 LOJ #2721. 「NOI2018」屠龙勇士 题解 首先假设每条龙都可以打死,每次拿到的剑攻击力为 \(ATK\) . 这个需要支持每次插入一个数,查找比一个 \(\le\) 数最大的数(或 ...

  3. 「NOI2018」屠龙勇士

    「NOI2018」屠龙勇士 题目描述 小\(D\)最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号\(1-n\)顺序杀掉\(n\) 条巨龙,每条巨龙拥有一个初始的生命 值ai .同时 ...

  4. 「NOI2018」屠龙勇士(EXCRT)

    「NOI2018」屠龙勇士(EXCRT) 终于把传说中 \(NOI2018D2\) 的签到题写掉了... 开始我还没读懂题目...而且这题细节巨麻烦...(可能对我而言) 首先我们要转换一下,每次的 ...

  5. POJ1061 青蛙的约会 和 LOJ2721 「NOI2018」屠龙勇士

    青蛙的约会 Language:Default 青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 133470 Accep ...

  6. 「NOI2018」屠龙勇士 解题报告

    「NOI2018」屠龙勇士 首先对于每个龙用哪个剑砍,我们可以用set随便模拟一下得到. 然后求出拿这个剑砍这条龙的答案 \[ atk_ix-p_iy=a_i \] 其中\(atk_i\)是砍第\(i ...

  7. NOI 2018 屠龙勇士 (拓展中国剩余定理excrt+拓展欧几里得exgcd)

    题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用e ...

  8. P4774-屠龙勇士-扩展中国剩余定理

    屠龙勇士 很久很久以前,巨龙突然出现,带来了灾难带走公主又消失不见.王国十分危险,世间谁最勇敢,一位英雄出现-- 学习于该大佬博客 那么你就是这位英雄,不过不同的是,你面对的是一群巨龙,虽然巨龙都不会 ...

  9. 「NOI2018」屠龙勇士(CRT)

    /* 首先杀每条龙用到的刀是能够确定的, 然后我们便得到了许多形如 ai - x * atki | pi的方程 而且限制了x的最小值 那么exgcd解出来就好了 之后就是扩展crt合并了 因为全T调了 ...

随机推荐

  1. 接口自动化之cookies登录

    现在有很多网站有验证码,跳过验证码实现登录可以使用cookies登录 目录 1.requests的添加cookies的方法 2.举个栗子 1.requests的添加cookies的方法 request ...

  2. java 集合框架 List相关接口

    AbstractCollection 此类提供 Collection 接口的骨干实现,以最大限度地减少了实现此接口所需的工作. 还有两个抽象方法,具体的迭代器,具体的Collection 的大小 pu ...

  3. (appium+python)UI自动化_09_unittest批量运行测试用例&生成测试报告

    前言 上篇文章[(appium+python)UI自动化_08_unittest编写测试用例]讲到如何使用unittets编写测试用例,并执行测试文件.接下来讲解下unittest如何批量执行测试文件 ...

  4. 【linux】 mail/mutt 发送邮件

    mail: 比较常用,缺点是发送附件要同时安装其他软件: mutt:功能强大,注意发送html需要升级到1.5+版本:   用mail发送邮件: echo "邮件正文" | mai ...

  5. Spring数据库连接池 c3p0、dbcp、spring-jdbc

    在用dbcp的时候 后面加上 destroy-method="close" 销毁的方法没事 但是用 spring的jdbc就会报错 提示找不到close这个方法  这是为什么? D ...

  6. spring-第十三篇之零配置支持

    1.搜索bean类,使用注解标注spring bean. @Component:标注一个普通的spring bean类 @Controller:标注一个控制器组件类(Java EE组件) @Servi ...

  7. smarty中判断数组是否为空的方法

    1,用count来取得数组的下标个数 下面例子中,如果$array为空则不输出任何数据 以下为引用的内容:{if $array|@count neq 0 }... ...{/if} 2,直接来判断 以 ...

  8. 三种分布式锁 简易说说(包含前一篇提到的redis分布式锁)

    大多数互联网系统都是分布式部署的,分布式部署确实能带来性能和效率上的提升,但为此,我们就需要多解决一个分布式环境下,数据一致性的问题. 当某个资源在多系统之间,具有共享性的时候,为了保证大家访问这个资 ...

  9. 在iOS中去掉input的光标

    在input上添加 readonly unselectable="on" οnfοcus="this.blur()" 就可以了.

  10. 268-基于FMC接口的DSP TMS320C6657子卡模块

    基于FMC接口的DSP TMS320C6657子卡模块 一. 概述         FMC连接器是一种高速多pin的互连器件,广泛应用于板卡对接的设备中,特别是在xilinx公司的所有开发板中都使用. ...