POJ 2995 Brackets 区间DP

题意

大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配。需要注意的是这里的匹配规则。

解题思路

区间DP,开始自己没想到是区间DP,以为就是用栈进行模拟呢,可是发现就是不大对,后来想到是不是使用DP,但是开始的时候自己没有推出递推关系,后来实在想不出来看的题解,才知道是区间DP,仔细一想确实是啊。

下面就是状态转移方程:

\[\begin{cases}dp[i][j] &=& dp[i+1][j-1]+if(str[i]和str[j]匹配) \\dp[i][j] &=& dp[i][k]+dp[k+1][j] & k=i+1,i+2,………j-1\end{cases}
\]

当初知道了转移方程,就自己写代码,可是就是不对,下面有两个代码,一个是错误的,一个是正确的,两个对比看一看原因。

代码实现

//这个是正确的
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e3+7;
char str[maxn];
int dp[maxn][maxn];
int main()
{
while(scanf("%s", &str))
{
if(strcmp("end", str)==0)
break;
int n=strlen(str);
memset(dp, 0, sizeof(dp));
//下面书写的格式很重要,先算长度为1的区间,然后再算区间为2的区间,以此类推
for(int len=1; len<=n; len++)
{
for(int L=0; L+len<n; L++)
{
int R=L+len;
if((str[L]=='(' && str[R]==')') || (str[L]=='[' && str[R]==']'))
{
dp[L][R]=dp[L+1][R-1]+2;
}
for(int k=L; k<R; k++)
{
dp[L][R]=max(dp[L][R], dp[L][k]+dp[k+1][R]);
}
}
}
printf("%d\n", dp[0][n-1]);
}
return 0;
}
//这个是错误的代码,下面分析主要原因,连样例都过不了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
using namespace std;
stack<char> st;
const int maxn=1e4+7;
char str[maxn];
int dp[maxn][maxn];
int main()
{
while(scanf("%s", str))
{
if(strcmp("end", str)==0)
break;
int n=strlen(str);
memset(dp, 0, sizeof(dp));
//下面的代码其实是有点问题的,应该是先算长度全为1的区间段,然后再是长度为2的,以此类推
//为什么要这这样呢,因为下面的max函数中第二项是一个重要的部分
for(int L=0; L<len; L++)
{
for(int R=i+1; R<len; R++)
{
dp[L][R]=dp[L+1][R-1];
if(str[L]=='(' && str[R]==')' || str[L]=='[' && str[R]==']')
{
dp[L][R]+=2;
}
for(int k=L; k<R; k++)
{
//下面的后两项之和应该在计算dp[L][R]之前就应该计算了,但是这里可能没有。
//所以区间DP的书写格式还是有点套路的。
dp[L][R]=max(dp[L][R], dp[L][k]+dp[k+1][R]);
}
}
}
printf("%d\n", dp[0][len-1]);
}
return 0;
}

POJ 2995 Brackets 区间DP的更多相关文章

  1. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  2. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  3. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  4. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  5. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  9. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

随机推荐

  1. docker和Dockerfile

    目录: 1.docker为什么会出现? 2.docker的理念 3.容器化技术 4.docker三要素 5.docker安装 6.docker帮助命令 7.Docker阿里云镜像加速器配置. 8.do ...

  2. python基础--几个特性

    1.helloword程序的解释 #!/usr/bin/python3 print("Hello, World!") 关于脚本第一行的 #!/usr/bin/python 的解释, ...

  3. cgi 检索Cookie信息

    Cookie信息检索页非常简单,Cookie信息存储在CGI的环境变量HTTP_COOKIE中,存储格式如下: key1=value1;key2=value2;key3=value3.... 以下是一 ...

  4. Unity3D_(游戏)跳一跳超简单制作过程

    跳一跳 工程文件界面 游戏界面 脚本 using DG.Tweening; using System.Collections; using System.Collections.Generic; us ...

  5. [CSP-S模拟测试]:装饰(状压DP)

    题目传送门(内部题114) 输入格式 第一行一个正整数$n$. 接下来一行$n-1$个正整数,第$i$个数为$f_{i+1}$. 接下来一行$n$个数,若第$i$个数为$0$则表示林先森希望$i$号点 ...

  6. javascript 六种数据类型

    js的数据类型和常见隐式转化逻辑. 一.六种数据类型 原始类型(基本类型):按值访问,可以操作保存在变量中实际的值.原始类型汇总中null和undefined比较特殊. 引用类型:引用类型的值是保存在 ...

  7. mysql 查询每个分组的前几名

    按分组排序,并查出每个分组的前3名 单表 SELECT * FROM ( SELECT ZONEID, uid, NAME, fight, IF ( , ) AS rank, ( @zone := z ...

  8. MQTT服务器特性支持详情

    特别提示:本人博客部分有参考网络其他博客,但均是本人亲手编写过并验证通过.如发现博客有错误,请及时提出以免误导其他人,谢谢!欢迎转载,但记得标明文章出处:http://www.cnblogs.com/ ...

  9. tinymq学习小结

    学了tinymq, 先将它的README翻译了一下: TinyMQ - A diminutive message queue (TinyMQ ---一个小型的消息队列) TinyMQ是一个为erlan ...

  10. leetcode 140 单词拆分2 word break II

    单词拆分2,递归+dp, 需要使用递归,同时使用记忆化搜索保存下来结果,c++代码如下 class Solution { public: //定义一个子串和子串拆分(如果有的话)的映射 unorder ...