[USACO07DEC]Sightseeing Cows

Description

Farmer John has decided to reward his cows for their hard work by taking them on a tour of the big city! The cows must decide how best to spend their free time.

Fortunately, they have a detailed city map showing the L (2 ≤ L ≤ 1000) major landmarks (conveniently numbered 1.. L) and the P (2 ≤ P ≤ 5000) unidirectional cow paths that join them. Farmer John will drive the cows to a starting landmark of their choice, from which they will walk along the cow paths to a series of other landmarks, ending back at their starting landmark where Farmer John will pick them up and take them back to the farm. Because space in the city is at a premium, the cow paths are very narrow and so travel along each cow path is only allowed in one fixed direction.

While the cows may spend as much time as they like in the city, they do tend to get bored easily. Visiting each new landmark is fun, but walking between them takes time. The cows know the exact fun values Fi (1 ≤ Fi ≤ 1000) for each landmark i.

The cows also know about the cowpaths. Cowpath i connects landmark L_1_i to L_2_i (in the direction L_1_i -> L_2_i ) and requires time Ti (1 ≤ Ti ≤ 1000) to traverse.

In order to have the best possible day off, the cows want to maximize the average fun value per unit time of their trip. Of course, the landmarks are only fun the first time they are visited; the cows may pass through the landmark more than once, but they do not perceive its fun value again. Furthermore, Farmer John is making the cows visit at least two landmarks, so that they get some exercise during their day off.

Help the cows find the maximum fun value per unit time that they can achieve.

Input

  • Line 1: Two space-separated integers: L and P
  • Lines 2..L+1: Line i+1 contains a single one integer: Fi
  • Lines L+2..L+P+1: Line L+i+1 describes cow path i with three space-separated integers: L_1_i , L_2_i , and Ti

Output

  • Line 1: A single number given to two decimal places (do not perform explicit rounding), the maximum possible average fun per unit time, or 0 if the cows cannot plan any trip at all in accordance with the above rules.

Sample Input

5 7

30

10

10

5

10

1 2 3

2 3 2

3 4 5

3 5 2

4 5 5

5 1 3

5 2 2

Sample Output

6.00

题意概述:

给定一张有向图,每个点求出一个权值\(fun[i]\),每条边有一个权值\(time[i]\)。求图中的一个环,使得“环上各点的权值和”/“环上各边的权值和”最大。输出这个最大值。

显然的0/1分数规划

每次二分出最大值,重新建边。由一般的0/1分数规划思路,我们需要确定环上是否有一个环是正环,但是这样不容易判断。所以我们把环的权值取反,这样就可以通过判断负环来\(check\)了。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int n,m,cnt,flag;
double inf=2000000000;
int head[1010],x[50010],y[50010],vis[1010];
double a[1010],z[50010],dis[1010];
struct node{
int to,next;double v;
}edge[10010];
void add(int x,int y,double z)
{
cnt++;edge[cnt].to=y;edge[cnt].v=z;edge[cnt].next=head[x];head[x]=cnt;
}
void spfa(int k)
{
vis[k]=1;
for(int i=head[k];i;i=edge[i].next)
{
int v=edge[i].to;
if(dis[v]>dis[k]+edge[i].v)
{
if(vis[v]) {flag=1;return;}
dis[v]=dis[k]+edge[i].v;
spfa(v);if(flag) return;
}
}
vis[k]=0;
}
bool check(double k)
{
cnt=0;flag=0;for(int i=1;i<=n;i++)head[i]=vis[i]=0,dis[i]=inf;
for(int i=1;i<=m;i++) add(x[i],y[i],k*z[i]-a[x[i]]);
for(int i=1;i<=n;i++){spfa(i);if(flag)return true;}
return false;
}
int main()
{
n=read();m=read();double l=0,r=0,mid;
for(int i=1;i<=n;i++) scanf("%lf",&a[i]),r+=a[i];
for(int i=1;i<=m;i++) x[i]=read(),y[i]=read(),scanf("%lf",&z[i]);
while(r-l>1e-4)
{
mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.2lf",r);
}

[USACO07DEC]Sightseeing Cows(负环,0/1分数规划)的更多相关文章

  1. Contest20140710 loop bellman-ford求负环&&0/1分数规划

    loop|loop.in|loop.out 题目描述: 给出一个有向带权图,权为边权,求一个简单回路,使其平均边权最小. 简单回路指不多次经过同一个点的回路. 输入格式: 第一行两个整数,表示图的点数 ...

  2. P2868 [USACO07DEC]Sightseeing Cows G

    题意描述 Sightseeing Cows G 给定一张有向图,图中每个点都有点权 \(a_i\),每条边都有边权 \(e_i\). 求图中一个环,使 "环上个点权之和" 除以 & ...

  3. bzoj3232圈地游戏——0/1分数规划+差分建模+判环

    Description DZY家的后院有一块地,由N行M列的方格组成,格子内种的菜有一定的价值,并且每一条单位长度的格线有一定的费用. DZY喜欢在地里散步.他总是从任意一个格点出发,沿着格线行走直到 ...

  4. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  5. poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】

    含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解.   Desert King Time Limit: 3000MS   Memory Li ...

  6. bzoj 3232 圈地游戏——0/1分数规划(或网络流)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...

  7. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

  8. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  9. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

随机推荐

  1. 详细讲解Android中的AbsListView的源码

    不知道各位童鞋们在开发的过程中有没有感兴趣过ListView是如何实现的呢?其实本身ListView的父类AbsListView才是关键,但是如果大家看过源码的话,会发现AbsListView将近70 ...

  2. UE4网络功能相关笔记

    RepNotity的作用 把变量设置成RepNotify除了像C#语言中的"属性"一样,提供一个改变变量时调用一个函数的机会以外,其真正重要的作用其实是应对网通同步延迟问题. 一定 ...

  3. 搭建wordpress-安装xshell

    安装xshell 下载地址 https://www.netsarang.com/download/down_xsh6.html?token=RmxrTGc3VEkwN2VxSnRuRC92RENkUU ...

  4. Seaborn 绘图代码

    seaborn单变量.多变量及回归分析绘图 https://blog.csdn.net/llh_1178/article/details/78147822 Python数据科学分析速查表 https: ...

  5. SQL Server函数大全(三)----Union与Union All的区别

    如果我们需要将两个select语句的结果作为一个整体显示出来,我们就需要用到union或者union all关键字.union(或称为联合)的作用是将多个结果合并在一起显示出来. union和unio ...

  6. leetcode-mid-array-49 Group Anagrams

    mycode  95.35% 思路:构建字典 class Solution(object): def groupAnagrams(self, strs): """ :ty ...

  7. Linux_SquidProxyServer代理服务器

    目录 目录 Squid proxy server Web proxy server operating principle Squid features Setup squid server Setu ...

  8. dropna()函数

    参数: axis:       default 0指行,1为列 how:       {‘any’, ‘all’}, default ‘any’指带缺失值的所有行;'all’指清除全是缺失值的 thr ...

  9. jmeter之分布式压测

    很多性能大牛说一台机器的压测其实不准确,于是搜索网上的分布式压测练习了一番 目录 1.环境准备 2.控制机和压测机配置 3.执行分布式压测 1.环境准备 1.1准备一台windows作为控制机(mas ...

  10. 网络摄像头CVE

    CVE-2018-9995 rtsp未授权访问 rtsp后缀整理: Axis(安讯士) rtsp:// 192.168.200.202/axis-media/media.amp?videocodec= ...