题意:给定三个序列abc,问最少操作几次使得满足a<b<c

题解:将三个序列合并起来,设cnt[i][1/2/3]表示前i个数有几个是来自序列1/2/3的。

枚举第一个序列要到i,此时对于第一个序列的操作次数就是cnt[i][2]+cnt[i][3]+cnt[n][1]-cnt[i][1]

对于第二个序列,暴力枚举要到j,此时的操作次数就是cnt[j][3]-cnt[i][3]+cnt[n][2]-cnt[j][2]

将两个加起来就是答案,求出最小的那个

显然这样做是O(n^2)的,考虑优化

可以观察到,对于一个确定的i,cnt[i][3]是定值,将式子改写为cnt[j][3]+cnt[n][2]-cnt[j][2]-cnt[i][3],设f[i]=cnt[i][3]+cnt[n][2]-cnt[i][2],那么f[i]是一个确定的函数,式子进一步改写为f[j]-cnt[i][3]

相当于对于每个i,求一个最小的f[j]-cnt[i][3],用一个线段树即可

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int k1,k2,k3,a,n,ans=1e9;
int cnt[][];
struct node
{
int v,bh;
}q[];
bool cmp(const node &T1,const node &T2){return T1.v<T2.v;}
class Segtree
{
public:
int v[*],fl[*]; void pushup(int fxy)
{
v[fxy]=min(v[fxy<<],v[fxy<<|]);
}
void pushdown(int fxy)
{
if(fl[fxy])
{
v[fxy<<]+=fl[fxy];
v[fxy<<|]+=fl[fxy];
fl[fxy<<]+=fl[fxy];
fl[fxy<<|]+=fl[fxy];
fl[fxy]=;
}
}
void build(int l,int r,int fxy)
{
if(l==r)
{
v[fxy]=cnt[l][]+cnt[n][]-cnt[r][];
return;
}
int mid=l+r>>;
build(l,mid,fxy<<);
build(mid+,r,fxy<<|);
pushup(fxy);
}
void change(int l,int r,int al,int ar,int tv,int fxy)
{
if(l==al && r==ar)
{
v[fxy]+=tv;
fl[fxy]+=tv;
return;
}
pushdown(fxy);
int mid=l+r>>;
if(ar<=mid)change(l,mid,al,ar,tv,fxy<<);
if(al>mid)change(mid+,r,al,ar,tv,fxy<<|);
if(al<=mid && ar>mid)
{
change(l,mid,al,mid,tv,fxy<<);
change(mid+,r,mid+,ar,tv,fxy<<|);
}
pushup(fxy);
}
int ask(int l,int r,int al,int ar,int fxy)
{
if(l==al && r==ar)return v[fxy];
pushdown(fxy);
int mid=l+r>>;
if(ar<=mid)return ask(l,mid,al,ar,fxy<<);
if(al>mid)return ask(mid+,r,al,ar,fxy<<|);
return min(ask(l,mid,al,mid,fxy<<),ask(mid+,r,mid+,ar,fxy<<|));
}
}segtree;
int main()
{
scanf("%d%d%d",&k1,&k2,&k3);
for(int i=;i<=k1;i++){scanf("%d",&a);q[i]=(node){a,};}
for(int i=;i<=k2;i++){scanf("%d",&a);q[i+k1]=(node){a,};}
for(int i=;i<=k3;i++){scanf("%d",&a);q[i+k1+k2]=(node){a,};}
n=k1+k2+k3;
sort(q+,q++n,cmp);
for(int i=;i<=n;i++)
{
cnt[i][]=cnt[i-][]+(q[i].bh==);
cnt[i][]=cnt[i-][]+(q[i].bh==);
cnt[i][]=cnt[i-][]+(q[i].bh==);
}
int t;
segtree.build(,n,);
for(int i=;i<n;i++)
{
t=segtree.ask(,n,i+,n,);
t=min(t,cnt[n][]-cnt[i][]);
ans=min(ans,t+cnt[i][]+cnt[i][]+cnt[n][]-cnt[i][]);
if(q[i+].bh==)segtree.change(,n,i+,n,-,);
}
ans=min(ans,cnt[n][]+cnt[n][]);
printf("%d\n",ans);
return ;
}

【CF1257E】The Contest【线段树】的更多相关文章

  1. hdu 1698 线段树 区间更新 区间求和

    Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. 2017 Multi-University Training Contest - Team 9 1002&&HDU 6162 Ch’s gift【树链部分+线段树】

    Ch’s gift Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. Codeforces Round #222 (Div. 1) B. Preparing for the Contest 二分+线段树

    B. Preparing for the Contest 题目连接: http://codeforces.com/contest/377/problem/B Description Soon ther ...

  5. AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图

    AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...

  6. UVALive 7141 BombX(离散化+线段树)(2014 Asia Shanghai Regional Contest)

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=6 ...

  7. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  8. HDU 5775 Bubble Sort(线段树)(2016 Multi-University Training Contest 4 1012)

    原址地址:http://ibupu.link/?id=31 Problem Description P is a permutation of the integers from 1 to N(ind ...

  9. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

随机推荐

  1. ELK Stack 企业级日志收集平台

    ELK Stack介绍 大型项目,多产品线的日志收集 ,分析平台 为什么用ELK? 1.开发人员排查问题,服务器上查看权限 2.项目多,服务器多,日志类型多 ELK 架构介绍 数据源--->lo ...

  2. logstash异常

    logstash异常 1 2 3 Unrecognized VM option 'UseParNewGC' Error: Could not create the Java Virtual Machi ...

  3. yield,sleep,wait

    转自:http://dylanxu.iteye.com/blog/1322066 1.sleep() 使当前线程(即调用该方法的线程)暂停执行一段时间,让其他线程有机会继续执行,但它并不释放对象锁.也 ...

  4. eclipse中常用的快捷键【开发常用到的】

    1.全部选中:Ctrl+A 2.剪切Ctrl+X.复制Ctrl+C.粘贴Ctrl+V.保存Ctrl+S 3.撤销Ctrl+Z.取消撤销Ctrl+Y 4.规范代码:Ctrl+Shift+F 5.将代码更 ...

  5. this,static,执行程序的顺序等等留意点

    self.static 和 $this 的区别为了更好地理解 self.static 和 $this 的区别,先来看一个示例. <?phpclass A { protected $name = ...

  6. overflow的量两种模式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 使用IP在局域网内访问System.Net.HttpListenerException:“拒绝访问。”

    记录一下,自己写的程序之前运行没有遇到这个问题,突然遇到这个问题,找了一圈没有找到有效的解决方案,到最后发现,以管理员身份运行程序即可.简单记录一下. 还有就是 .UseUrls("http ...

  8. java 企业 网站源码 后台 springmvc SSM 前台 静态化 代码生成器

    前台: 支持四套模版, 可以在后台切换 系统介绍: 1.网站后台采用主流的 SSM 框架 jsp JSTL,网站后台采用freemaker静态化模版引擎生成html 2.因为是生成的html,所以访问 ...

  9. opencv配置经常遇到的错误

    我们在运行一些书上的例子,经常会遇到以下的错误 还有什么Assertion Failed错误.这些错误都是我运行浅墨书上的例子或者博客的例子上面的代码的错误,他自己也提了一下,但是说的不是特别的清楚, ...

  10. 获取Http请求IP的工具类

    public class IpAddressUtil { public static String getIpAddr(HttpServletRequest request){ String ipAd ...