POJ 2229 Sumsets(规律)
这是一道意想不到的规律题。。。。。。。。。。。。或许是我比较菜,找不到把。
Description
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
Output
Sample Input
7
Sample Output
6 规律是:1 2 2 4 4 6 6 10 10 14 14 20 20 26 26 36,,,由这里不难可以看出,如果是奇数位,则于他前一位相当。。。重点是偶数位,d[i]=d[i-1]+d[i/2],这规律真的是。。。。
AC代码:
#define MOD 10000000000
#define MAX 20000
#include<stdio.h>
int d[MAX];
int main()
{
int n;
scanf("%d",&n);
d[]=;
d[]=;
for(int i= ;i<=n ;i++)
if(i & )
d[i]=d[i-]%MOD;
else
d[i]=(d[i-]+d[i/])%MOD;
printf("%d\n",d[n]);
return ;
}
POJ 2229 Sumsets(规律)的更多相关文章
- POJ 2229 Sumsets(找规律,预处理)
题目 参考了别人找的规律再理解 /* 8=1+1+1+1+1+1+1+1+1 1 8=1+1+1+1+1+1+1+2 2 3 8=1+1+1+1+2+2 8=1+1+1+1+4 4 5 8=1+1+2 ...
- POJ 2229 Sumsets(递推,找规律)
构造,递推,因为划分是合并的逆过程,考虑怎么合并. 先把N展开成全部为N个1然后合并,因为和顺序无关,所以只和出现次数有关情况有点多并且为了避免重复,分类,C[i]表示序列中最大的数为2^i时的方案数 ...
- poj -2229 Sumsets (dp)
http://poj.org/problem?id=2229 题意很简单就是给你一个数n,然后选2的整数幂之和去组成这个数.问你不同方案数之和是多少? n很大,所以输出后9位即可. dp[i] 表示组 ...
- poj 2229 Sumsets(dp)
Sumsets Time Limit : 4000/2000ms (Java/Other) Memory Limit : 400000/200000K (Java/Other) Total Sub ...
- POJ 2229 Sumsets
Sumsets Time Limit: 2000MS Memory Limit: 200000K Total Submissions: 11892 Accepted: 4782 Descrip ...
- poj 2229 Sumsets 完全背包求方案总数
Sumsets Description Farmer John commanded his cows to search for different sets of numbers that sum ...
- poj 2229 Sumsets DP
题意:给定一个整数N (1<= N <= 1000000),求出以 N为和 的式子有多少个,式子中的加数只能有2的幂次方组成 如5 : 1+1+1+1+1.1+1+1+2.1+2+2.1+ ...
- poj 2229 Sumsets(dp 或 数学)
Description Farmer John commanded his cows to search . Here are the possible sets of numbers that su ...
- poj 2229 Sumsets(记录结果再利用的DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 将一个数N分解为2的幂之和共有几种分法? 题解: 定义dp[ i ]为数 i 的 ...
随机推荐
- Solr 空间搜索配置、按经纬度计算距离排序
Solr 空间搜索配置 1. 在solr目录下的找到conf文件夹下的schema.xml. <fields> <!-- 在fields元素中添加如下代码 --> <fi ...
- 第二天:tomcat体系结构和第一个Servlet
1. 打war包 2. Tomcat体系再说明: 问题:如何去配置默认主机??? 3.tomcat和servlet在网络中的位置 4. servlet快速入门案例 1).开发s ...
- re.spilt
- POJ 1187 陨石的秘密 (线性DP)
题意: 公元11380年,一颗巨大的陨石坠落在南极.于是,灾难降临了,地球上出现了一系列反常的现象.当人们焦急万分的时候,一支中国科学家组成的南极考察队赶到了出事地点.经过一番侦察,科学家们发现陨石上 ...
- global作用域
1 global在函数内部 $somevar=15; function addit () { GLOBAL $somevar; $somevar++ ; echo "somevar is ...
- Python02 标准输入输出、数据类型、变量、随记数的生成、turtle模块详解
1 标准输出 python3利用 print() 来实现标准输出 def print(self, *args, sep=' ', end='\n', file=None): # known speci ...
- Linux 控制台/终端/tty/shell
一.简介 使用linux已经有一段时间,却一直弄不明白这几个概念之间的区别.这些概念本身有着非常浓厚的历史气息,随着时代的发展,他们的含义也在发生改变,它们有些已经失去了最初的含义,但是它们的名字却被 ...
- CF609E Minimum spanning tree for each edge
原来觉得是一个LCT,感觉自己瞬间傻掉…… 考虑到先做一个最小生成树求出做最小生成树的代价$ans$,顺便标记一下树边和非树边,把边按照输入$id$排序回去之后扫,如果扫到一条树边,那么此时的答案就是 ...
- scala中的注解
scala中很多注解实现java中关键字的用法 @volatile注解标记为易失的:@transient注解将字段标记为瞬态的:@strictfp注解对应strictfp修饰符:@native注解标记 ...
- c++调用python引号的问题
Boost.Python向python里面传递字符串时,引号是个很关键的问题. const char* cstr="hello \\\" world" // hello ...