CF 1027E Inverse Coloring
当天晚上并没有看懂题意,然后就刚了40分钟F,但是没有弄出来呜呜呜。
推荐博客: https://blog.csdn.net/Dream_maker_yk/article/details/81840495
考虑到我们写出一行和一列的情况就可以还原出整个正方形,而这一行和这一列的长度是一样的,所以我们可以合在一起dp。
我们设$f_{i, j}$表示在前$i$个格子中最长的一个颜色的长度为$j$的方案数,有转移方程:
$f_{i, j} = \sum_{j = 1}^{i}\sum_{k = 1}^{j}f_{i - k, min(j, i - k)}$
注意到这时候我们算出来的$f_{i, j}$实际上是包含了$f_{i, j - 1}, f_{i, j - 2}...$的情况的,所以我们再差分一遍使$f_{i, j}$的定义表示为长度为$i$的序列中最长的连续相同的颜色段恰好为$j$的方案数。
然后我们只要枚举这个连续的最长段的长度去累加答案就好了,其实到现在为止我们都只是计算了一种颜色的情况,考虑到把黑白格子反一反就可以得到完全相同的另外的合法情况,所以最后把答案乘以二。
枚举时注意小细节$j$的范围要小于$n$,我就是这样RE了一次。
Code:
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll; const int N = ;
const ll P = 998244353LL; int n, siz;
ll f[N][N]; inline int min(int x, int y) {
return x > y ? y : x;
} int main() {
scanf("%d%d", &n, &siz); f[][] = 1LL;
for(int i = ; i <= n; i++)
for(int j = ; j <= i; j++)
for(int k = ; k <= j; k++)
f[i][j] = (f[i][j] + f[i - k][min(j, i - k)]) % P;
for(int i = n; i >= ; i--)
f[n][i] = (f[n][i] - f[n][i - ] % P + P) % P; /* for(int i = 1; i <= n; i++)
printf("%lld ", f[n][i]);
printf("\n"); */ ll ans = 0LL;
for(int i = ; i <= n; i++)
for(int j = ; j * i < siz && j <= n; j++)
ans = (ans + f[n][i] * f[n][j] % P) % P;
ans = ans * % P;
printf("%lld\n", ans); return ;
}
CF 1027E Inverse Coloring的更多相关文章
- Codeforces 1027E Inverse Coloring 【DP】
Codeforces 1027E Inverse Coloring 题目链接 #include<bits/stdc++.h> using namespace std; #define N ...
- codeforces 1027E. Inverse Coloring(计数)
一开始发现的性质是确定了第一行后,后面的行只需要考虑和前面的行相同或者不同,整个过程只需要考虑行,构出的图一定符合性质(即同样满足列的性质),但是接下来死活定义不出状态,事实证明自己还是想的太少了 思 ...
- codeforces 1027 E. Inverse coloring (DP)
E. Inverse Coloring time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- CF1027E Inverse Coloring
题意:n × n的矩阵,每个位置可以被染成黑/白色. 一种gay的染色是任意相邻两行的元素,每两个要么都相同,要么都不同.列同理. 一种gaygay的染色是一种gay的染色,其中没有哪个颜色的子矩阵大 ...
- 【CF1027E】Inverse Coloring(DP)
题意:给出一个n*n的矩阵,要求在每个位置涂上黑/白色, 要求满足:任意相邻的两行,其颜色要么完全相同,要么完全相反 任意相邻的两列,其颜色也要么相同要么完全相反 且这个矩形中,不存在任意一个大小大于 ...
- Educational Codeforces Round 49 (Rated for Div. 2)
题目链接 还缺F和G,至少上橙之后把F补了吧. A - Palindromic Twist 题意:每个字母恰好操作一次,变成其之前或者其之后的一个字母,注意'a'和'z'不互通,求是否可以变成回文串. ...
- Codeforces Edu Round 49 A-E
A. Palindromic Twist 由于必须改变.所以要使\(a[i] = a[n - i + 1]\). 要么同向走,但必须满足之前的\(a[i] = a[n - i + 1]\). 要么相遇 ...
- CF 149D Coloring Brackets(区间DP,好题,给配对的括号上色,求上色方案数,限制条件多,dp四维)
1.http://codeforces.com/problemset/problem/149/D 2.题目大意 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色, ...
- CF 149D Coloring Brackets 区间dp ****
给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2.每对括号必须只能给其中的一个上色 3.相邻的两个不能上同色,可以都不上色 求0-len-1这一区间内 ...
随机推荐
- MySQL多种安装方式选择
1.rpm包安装方式 rpm包的安装方式非常简单,这里以el6平台下的mysql-5.6.34版本为例,首先,要通过上述搜狐镜像地址下载到如下四个MySQL相关软件安装包. a.下载安装包 MySQL ...
- linux shell 学习笔记--比较操作
整数比较 -eq 等于,如:if [ "$a" -eq "$b" ] -ne 不等于,如:if [ "$a" -ne "$b&qu ...
- hibernate - 一级缓存和三种状态解析
转载自:http://www.cnblogs.com/whgk/p/6103038.html 一.一级缓存和快照 什么是一级缓存呢? 很简单,每次hibernate跟数据库打交道时,都是通过sessi ...
- 打印iphone支持的所有字体
//打印iphone支持的所有字体 NSArray *familyNames = [UIFont familyNames]; for(NSString *familyName in familyNam ...
- UVA - 10723 Alibaba (dp)
给你两个长度不超过30的字符串序列,让你找到一个最短的字符串,使得给定的两个字符串均是它的子序列(不一定连续),求出最短长度以及符合条件的解的个数. 定义状态(a,b,c)为当前字符串长度为a,其中包 ...
- [独孤九剑]Oracle知识点梳理(九)数据库常用对象之package
本系列链接导航: [独孤九剑]Oracle知识点梳理(一)表空间.用户 [独孤九剑]Oracle知识点梳理(二)数据库的连接 [独孤九剑]Oracle知识点梳理(三)导入.导出 [独孤九剑]Oracl ...
- 学习动态性能表(8)--v$lock&v$locked_object
学习动态性能表 第八篇-(1)-V$LOCK 2007.5.31 这个视图列出Oracle 服务器当前拥有的锁以及未完成的锁或栓锁请求.如果你觉着session在等待等待事件队列那你应该检查本视图. ...
- 清理svn.bat
@echo on color 2f mode con: cols=80 lines=25 @REM @echo 正在清理SVN文件,请稍候...... @rem 循环删除当前目录及子目录下 ...
- QT:QString、QByteArray和char *的转换 【转载】
原文网址:http://blog.csdn.net/light1028/article/details/7899541 第一种,数据流的方式,这里只说从QByteArray转向QString. QBy ...
- Mesos-slave启动处理记录
1. work_dir错误导致启动异常 /etc/mesos-slave/work_dir设置的目录不存在或者权限不够将会导致启动异常. 2. 根据日志信息以及status信息来判断问题 通过serv ...