Different Division

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 234    Accepted Submission(s): 90
Problem Description
Now we will give you a graph, there are many points in the graph. We will choose two different points arbitrarily, and connect them as a line. Please tell us that whether these points (Include the two
points referred above) is on the left side of the line, or lying on the line. or on the right side of the line. For example,


There are four points in the graph: A, B, C, D. we connect C and D. Now C and D form a new line “CD”. Obviously, C and D are lying on the line “CD”. A is on the right side of CD, and B is on the left side of CD. What’s more, A is on the left side of line DC,
and B is on the right side of line DC. So line “CD” and “DC” are different in this problem;
 
Input
The first line of input is a single integer T, indicating the number of test cases. Then exactly T test cases followed. In each case, the first line contains one integer: N, the number of points. Then
N lines followed, each line contains two real numbers X, Y, indicating the coordinates of points. Then one line follows, contains two integers P1 and P2 indicate the P1th point and the P2th point in this case.
1<= T <= 100
2 <= N <= 1000
1<= P1, P2 <= N, P1 != P2
-1000 < X, Y < 1000;
 
Output
For each case, print N lines. According to the order of input, for each point print “Left” if this point is on the left side of line P1P2 , or ”On” if this point is lying on line P1P2 , or ”Right” if this
is on the right side of line P1P2.
 
Sample Input

1
4
1 1
1 2
3 3
2 1
1 3
 
Sample Output

On
Left
On
Right
 
思路:叉积
<span style="font-size:18px;">#include <cstdio>
#include <iostream>
using namespace std;
#define N 1005
double a[N],b[N]; int main()
{
int t;
double x1,x2,y1,y2,sum;
scanf("%d",&t);
while(t--)
{
int n,i;
scanf("%d",&n);
for(i = 1; i <= n; i++)
scanf("%lf%lf",&a[i],&b[i]);
int p1,p2;
scanf("%d%d",&p1,&p2); x1 = a[p2] - a[p1];
y1 = b[p2] - b[p1]; for(i=1; i<=n; i++)
{
x2 = a[i] - a[p1];
y2 = b[i] - b[p1]; sum = x1*y2 - x2*y1;
if(sum < 0)
printf("Right\n");
else if(sum > 0)
printf("Left\n");
else printf("On\n");
}
}
return 0;
}</span>

hdu 3718 Different Division的更多相关文章

  1. HDU 3718 Similarity(KM最大匹配)

    HDU 3718 Similarity 题目链接 题意:给定一个标准答案字符串,然后以下每一行给一个串.要求把字符一种相应一种,要求匹配尽量多 思路:显然的KM最大匹配问题,位置相应的字符连边权值+1 ...

  2. 【HDU】3480 Division

    http://acm.hdu.edu.cn/showproblem.php?pid=3480 题意:一个n个元素的集合S要求分成m个子集且子集并为S,要求$\sum_{S_i} (MAX-MIN)^2 ...

  3. 【HDU 6036】Division Game (NTT+数学)

    多校1 1004 HDU-6036 Division Game 题意 有k堆石头(0~k-1),每堆n个.\(n=\prod_{i=0}^{m}p_i^{e_i}\).\(0\le m,k \le 1 ...

  4. hdu 3718

    一个二分图最大匹配的题: 匈牙利算法不熟: 建了个模,用最小费用最大流解决了 #include <iostream> #include <cstring> #define IN ...

  5. HDU 5845 Best Division

    $dp$,字典树. $dp$递推式很容易知道.dp[i]=max{dp[j]+1} a[j]^..^a[i]<=X,并且$[j,i]$长度不能超过$L$. 但是暴力来复杂度极高,所以需要用字典树 ...

  6. KM HDU 3718

    #include<iostream> #include<stdio.h> #include<string.h> #include<algorithm> ...

  7. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  8. HDU 6036 - Division Game | 2017 Multi-University Training Contest 1

    /* HDU 6036 - Division Game [ 组合数学,NTT ] | 2017 Multi-University Training Contest 1 题意: k堆石子围成一个圈,数量 ...

  9. HDU 6036 Division Game

    HDU 6036 Division Game 考虑每堆石头最多操作 $ \sum e $ 次,考虑设 $ f(x) $ 表示某一堆石头(最开始都是一样的)操作 $ x $ 次后变成了 $ 1 $ 的方 ...

随机推荐

  1. Angular 学习笔记——ng-Resource

    <!DOCTYPE HTML> <html ng-app="myApp"> <head> <meta http-equiv="C ...

  2. mongoDB 删除某一字段、重新名字段

    批量删除字段: {multi:true}:查询到的所有记录都删除. db.collection_name.update({"target_field":{"$exists ...

  3. SSRF漏洞的挖掘经验

    本文转自:https://sobug.com/article/detail/11 SSRF概述 SSRF(Server-Side Request Forgery:服务器端请求伪造) 是一种由攻击者构造 ...

  4. 内网IPC$种马的三种方法

    copy muma.exe \\host\c$\windows\temp\foobar.exe ##IPC拷贝木马文件 WMIC远程运行命令 wmic /node:host /user:adminis ...

  5. iOS开发:解决UIScrollView不滚动的问题

    照着书上的Demo(iOS 5.0的教程),在- (void)viewDidLoad里设置scrollView的contentsize,让它大于屏幕的高度,却发现在模拟器中没用,还是不能滚.经过 一翻 ...

  6. 最新版的 react-native 降级处理

    1.react-native 常见操作 (1)react-native init Demo (2)adb devices (3)react-native run-android (4)ipconfig ...

  7. <context:annotation-config/>、<context:component-scan/>

    在基于主机方式配置Spring的配置文件中,你可能会见到<context:annotation-config/>这样一条配置,他的作用是式地向 Spring 容器注册 AutowiredA ...

  8. Ubuntu下安装配置和卸载Tomcat

    转载自:http://zyjustin9.iteye.com/blog/2177291 注:此处不采用apt-get安装,因为这种方式安装后,tomcat安装目录会到处都是,像天女散花一样.此处采取下 ...

  9. 文件json

    import jsondef op_data(filename,dic=None): if dic:#写入进去 with open(filename,'w',encoding='utf-8') as ...

  10. FormatFloat

    http://www.delphibasics.co.uk/RTL.asp?Name=FormatFloat 1  function FormatFloat ( const Formatting : ...