Link:

POJ 2329 传送门

Solution:

比较明显的$dp$,但爆搜好像也能过

用多个方向$dp$来解决此题,最后汇总答案即可

一开始我写了4个,但后来发现只要相反的2个方向即可,同时不用分别记录答案,直接不断更新答案即可

要特别注意对特例的判断:

不能只判断其最近距离相同且最近点相同

仅当$(a1,b1)$和$(a2,b2)$当前都仅有一个最近点且其相同时才不增加权值

否则可能$(a2,b2)$有多个最近点但正好记录了与$(a1,b1)$最近点相同的点

Code:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib> using namespace std; const int MAXN=+,INF=<<;
struct number{int cnt,d,x,y;}dp[MAXN][MAXN];
int n,dat[MAXN][MAXN]; void check(int a,int b,int l,int r)
{
if(dp[a][b].d+<dp[l][r].d)
dp[l][r]=dp[a][b],dp[l][r].d++;
else if(dp[a][b].d+==dp[l][r].d) //注意这里的判断细节
{
if(dp[l][r].cnt== && dp[a][b].cnt== && dp[l][r].x==dp[a][b].x && dp[l][r].y==dp[a][b].y) return;
dp[l][r].cnt+=dp[a][b].cnt; //cnt都为1时才返回
}
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) for(int j=;j<=n;j++)
scanf("%d",&dat[i][j]),dp[i][j].d=INF;
for(int i=;i<=n;i++) for(int j=;j<=n;j++)
{
if(dat[i][j]) dp[i][j].d=,dp[i][j].x=i,dp[i][j].y=j,dp[i][j].cnt=;
check(i,j,i+,j);check(i,j,i,j+);
}
for(int i=n;i>=;i--) for(int j=n;j>=;j--)
{
if(dat[i][j]) dp[i][j].d=,dp[i][j].x=i,dp[i][j].y=j,dp[i][j].cnt=;
check(i,j,i-,j);check(i,j,i,j-);
} for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(dat[i][j]){printf("%d ",dat[i][j]);continue;}
if(dp[i][j].cnt==) printf("%d ",dat[dp[i][j].x][dp[i][j].y]);
else printf("0 ");
}
puts("");
}
return ;
}

Review:

Hack能力不足啊,很多细节还是要多想想

如果多次判断内容相同,就放到函数里去吧

[POJ 2329] Nearest number-2的更多相关文章

  1. [NewTrain 10][poj 2329]Nearest Number - 2

    题面: http://poj.org/problem?id=2329 题解: 这题有很多做法 1. 搜索 复杂度$O(n^4)$ 但是实际上远远达不到这个复杂度 所以可以通过 2. 对于每一个格子,我 ...

  2. 【POJ】2329 Nearest number - 2(搜索)

    题目 传送门:QWQ 分析 在dp分类里做的,然而并不会$ O(n^3) $ 的$ dp $,怒写一发搜索. 看起来是$ O(n^4) $,但仔细分析了一下好像还挺靠谱的? poj挂了,没在poj交, ...

  3. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  4. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  5. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

  6. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  7. POJ 2329 (暴力+搜索bfs)

    Nearest number - 2 Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3943 Accepted: 1210 De ...

  8. POJ-2329 Nearest number - 2(BFS)

    Nearest number - 2 Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 4100 Accepted: 1275 De ...

  9. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

随机推荐

  1. day-python入门3

    本节内容 鸡汤.电影 IDE介绍 知识回顾 数据类型 For循环 while循环 列表及常用操作 IDE介绍   IDE即集成开发环境        常见IDE   Visualstudio  : w ...

  2. Lua2

    1. 迭代器与Closure 在Lua中,迭代器通常为函数,每调用一次函数,即返回集合中的“下一个”元素.每个迭代器都需要在每次成功调用之间保持一些状态,这样才能知道它所在的位置和下一次遍历时的位置. ...

  3. JavaWeb笔记(九)Ajax&Json

    AJAX 实现方式 原生的JS实现方式 //1.创建核心对象 var xmlhttp; if (window.XMLHttpRequest) {// code for IE7+, Firefox, C ...

  4. 第二阶段团队冲刺-six

    昨天: 完成打印名单的功能. 今天: 合并程序(添加打印txt). 遇到的问题: web.xml中配置url-pattern一直不合适,不知道为什么会影响界面.

  5. Block层也是有IO的优先级的

    ---恢复内容开始--- 今天查看iotop的原理,竟然发现了IO优先级一说,IO是block层cfs调度器中的概念 block层也有一个类似于CPU的调度算法 对进程分成三个级别:RT,BE,IDL ...

  6. [codevs1746][NOI2002]贪吃的九头龙

    [codevs1746][NOI2002]贪吃的九头龙 试题描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时 ...

  7. [AT2699]Flip and Rectangles

    题目大意:有一个$n\times m$的$01$矩阵,可以把任意行或列反转,问最大的全为一的子矩阵的面积 题解:有一个结论:若一个子矩形$S$中的任意一个$2\times 2$的子矩形都含有偶数个$1 ...

  8. RocketMQ 源码分析 RouteInfoManager(四)

    在上一章分析了NamesrvController的构造函数时,会生成一个RouteInfoManager对象,该对象存放着整个消息集群的相关消息,所以这里单独拿出来分析.其实试想一下namesrv的功 ...

  9. 2017 多校1 I Curse Myself

    2017 多校2 I Curse Myself(第k小生成树) 题目: 给一张带权无向连通图,该图的任意一条边最多只会经过一个简单环,定义\(V(k)为第k小生成树的权值和\),求出\(\sum_{k ...

  10. ubuntu启动报错 Errors were found while checking the disk-drive for /

    开机报这个错误,主要原因是硬盘检测不通过导致的,下面介绍两种方法规避该问题: 修改grub 这个方法网上比较多,直接贴过来: 进入Ubuntu启动菜单时,光标选中 *Ubuntu 后,按键盘上的 e ...