题意:一个n*m的方格矩阵,有的格子被涂成了黑色,问该矩阵中有多少个子矩阵,子矩阵不包含黑色格子;

思路:对于一个长为L, 高为H的无黑点矩阵中包含的高为H的子矩阵个数为L+(L-1)+(L-2)+...+1个;这是直接算的一种方法;如何程序表示该计算呢?

for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=;
}
}

这样的一个双层循环就表示了上式;那么所有子矩阵个数就是三层循环,高由1->H:

for(int h=; h<=H; h++){
for(int i=; i<=L; i++){
for(int j=i; j>; j--){
count+=h;
}
}
} ​

这是其中没有黑点的;如果在某处加了个黑点又如何计算呢?如下图:

先看高为H(4)的子矩阵个数:以(4, 7)为右下角的高为H的子矩阵个数为3个,由L=4处在向左,就只能构成高为2的子矩阵了;

那么怎么该上边的代码才能得出答案呢?如下:

for(int i=; i<=H; i++){
for(int j=; j<=L; j++){
h=i;
for(int k=j; k>; k--){
h=min(h, i-p[k]);
count+=h;
}
}
}
//p[k]表示第k列中在i行上边的第一个黑点的位置,

上边代码就是本题的核心代码了;然后H用n代替,L用m代替,这样复杂度为O(n*m*m);然后标记黑点的位置每次维护h就可以了

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[][],b[];
int main( )
{
int t , cas = ; scanf("%d",&t) ; while(t--)
{
cas++;
int n , m , id ;
scanf("%d%d%d",&n,&m,&id);
for(int i= ; i<=n ; i++)
for(int j= ; j<=m ; j++)
{
a[i][j]=;
b[j]=;
}
for(int i= ; i<id ; i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]=;
}
long long ans = ;
for(int i= ; i<=n ; i++)
{
for(int j= ; j<=m ; j++)
{
if(a[i][j])
b[j]=i;
} for(int j= ; j<=m ; j++)
{
int MINX = 0x3f3f3f3f ;
for(int k=j ; k> ; k--)
{
MINX = min(MINX,(i-b[k]));
ans+=MINX;
}
}
}
printf("Case #%d: %lld\n",cas , ans); }
}

感谢

ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall (暴力)的更多相关文章

  1. ACM-ICPC 2018 南京赛区网络预赛 B. The writing on the wall

    题目链接:https://nanti.jisuanke.com/t/30991 2000ms 262144K   Feeling hungry, a cute hamster decides to o ...

  2. ACM-ICPC 2018 南京赛区网络预赛 B The writing on the wall(思维)

    https://nanti.jisuanke.com/t/30991 题意 一个n*m的方格矩阵,有的格子被涂成了黑色,问该矩阵中有多少个子矩阵,子矩阵不包含黑色格子. 分析 参考https://bl ...

  3. ACM-ICPC 2018 南京赛区网络预赛 J.sum

    A square-free integer is an integer which is indivisible by any square number except 11. For example ...

  4. ACM-ICPC 2018 南京赛区网络预赛 E题

    ACM-ICPC 2018 南京赛区网络预赛 E题 题目链接: https://nanti.jisuanke.com/t/30994 Dlsj is competing in a contest wi ...

  5. ACM-ICPC 2018 南京赛区网络预赛B

    题目链接:https://nanti.jisuanke.com/t/30991 Feeling hungry, a cute hamster decides to order some take-aw ...

  6. 计蒜客 30999.Sum-筛无平方因数的数 (ACM-ICPC 2018 南京赛区网络预赛 J)

    J. Sum 26.87% 1000ms 512000K   A square-free integer is an integer which is indivisible by any squar ...

  7. 计蒜客 30996.Lpl and Energy-saving Lamps-线段树(区间满足条件最靠左的值) (ACM-ICPC 2018 南京赛区网络预赛 G)

    G. Lpl and Energy-saving Lamps 42.07% 1000ms 65536K   During tea-drinking, princess, amongst other t ...

  8. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  9. ACM-ICPC 2018 南京赛区网络预赛

    轻轻松松也能拿到区域赛名额,CCPC真的好难 An Olympian Math Problem 问答 只看题面 54.76% 1000ms 65536K   Alice, a student of g ...

随机推荐

  1. 【LeetCode】001. Two Sum

    题目: Given an array of integers, return indices of the two numbers such that they add up to a specifi ...

  2. RTSP 协议分析 (一)

    RTSP 协议分析1.概述: RTSP(Real Time Streaming Protocol),实时流传输协议,是TCP/IP协议体系中的一个应用层协议,由哥伦比亚大学.网景和RealNetwor ...

  3. chrome中的content script脚本文件

    打开chrome的devtools工具,sources下有一个Content script: 1 chrome插件开发过程中难免会遇到使用content script来操作页面的dom,在chrome ...

  4. netty中的ByteBuf

    网络数据的基本单位总是字节.Java NIO 提供了 ByteBuffer 作为它 的字节容器,但是这个类使用起来过于复杂,而且也有些繁琐. Netty 的 ByteBuffer 替代品是 ByteB ...

  5. AxInterop.ShockwaveFlashObjects.dll 问题

    在实际项目中引用此dll加载项目启动动画(swf),但在64位上此dll并不支持,解决办法有待商讨,个人在项目中,把加载动画的部分给注释掉了,不给项目中签入,他们用的都是32位系统,我的是64位的.请 ...

  6. Android开发者学习必备:10个优质的源码供大家学习

    最近看了一些开发的东西,汇总了一些源码.希望可以给大家有些帮助! 1.Android 源码解析—PagerSlidingTabStrippagerSlidingTabStrip 实现联动效果的原理是, ...

  7. JQuery鼠标移动上去显示预览图

    body中: <img src="../images/icon_view.gif" bigimg="../img.jpg" title="查看预 ...

  8. maven spring3.2.5

    出现的情形: 开发环境: spring3.2.5 + springmvc +spirngDATA +maven 一. 偶然的spring Junit4测试 加载applicationContext.x ...

  9. Mac系统的launchd、守护进程daemon(2013笔记整理)

    1. launchd Mac系统下通用的进程管理器,是Mac系统下非常重要的一个进程,一般来说该进程不允许直接以命令行的形式调用.只能通过其控制管理界面,launchctl来进行控制. launchd ...

  10. JAVA基础知识总结3(面向对象)

    特点:过程其实就是函数:对象是将函数等一些内容进行了封装 1:将复杂的事情简单化. 2:面向对象将以前的过程中的执行者,变成了指挥者. 3:面向对象这种思想是符合现在人们思考习惯的一种思想. 匿名对象 ...