给定一棵n个点并且有边权的树,每个点的权值为该点能走的最远长度,并输入m个询问,每次询问最多有多少个编号连续的点,他们的最大最小点权差小于等于Q。N<=50000 M<=500 Q<=10000000

  我们知道一个点能走的最远端点一定是树的直径的端点,所以我们只需从树的直径两端点dfs,就可以求出每个点能到的最远长度。。然后rmq+尺取即可。

这道题如果用系统的log会tle,所以必须手打log2。原理会再放一篇博客。

 #include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=, maxmi=, INF=1e9;
//const double exp=1e-6;
int n, m, cntedge, maxdist, maxdistpos;
int fir[maxn], val[maxn];
int fmaxm[maxn][maxmi], fminm[maxn][maxmi];
struct Edge{
int to, v, next;
};
Edge edge[maxn]; void addedge(int x, int y, int z){
++cntedge;
Edge &nowedge1=edge[cntedge];
nowedge1.to=y, nowedge1.v=z, nowedge1.next=fir[x];
fir[x]=cntedge;
++cntedge;
Edge &nowedge2=edge[cntedge];
nowedge2.to=x, nowedge2.v=z, nowedge2.next=fir[y];
fir[y]=cntedge;
return;
} void dfs(int now, int par, int dist){
int nowedge, nowson;
nowedge=fir[now];
while (nowedge){
nowson=edge[nowedge].to;
if (nowson==par){
nowedge=edge[nowedge].next;
continue;
}
dfs(nowson, now, dist+edge[nowedge].v);
nowedge=edge[nowedge].next;
}
if (dist>val[now]) val[now]=dist;
if (dist>maxdist){
maxdist=dist;
maxdistpos=now;
}
return;
} int flog2(float x) {
return ((unsigned&)x>>&)-;
}
int dvalue(int head, int tail){
int maxm=, minm=1e9;
int lognum=flog2(tail-head+);
maxm=max(fmaxm[head][lognum], fmaxm[tail-(<<lognum)+][lognum]);
minm=min(fminm[head][lognum], fminm[tail-(<<lognum)+][lognum]);
return maxm-minm;
} void init(){
memset(fir, , sizeof(fir));
memset(val, , sizeof(val));
for (int i=; i<maxn; ++i){
edge[i].next=edge[i].to=edge[i].v=;
}
cntedge=;
} int ri(){
char c;
int flag=, r=;
do{
c=getchar();
if (c=='-') flag=-;
} while (!isgraph(c));
do{
r=r*+c-;
c=getchar();
} while (isgraph(c));
return r*flag;
} int main(){
int x, y, z;
while (~scanf("%d%d", &n, &m)){
if (n==&&m==) break;
init();
for (int i=; i<n; ++i){
x=ri(), y=ri(), z=ri();
addedge(x, y, z);
}
int s=, far1, far2;
maxdist=, dfs(s, , );
far1=maxdistpos;
maxdist=, dfs(far1, , );
far2=maxdistpos;
maxdist=, dfs(far2, , );
//for (int i=1; i<=n; ++i)
//printf("%d\n", val[i]);
int q=;
for (int i=; i<=n; ++i)
fmaxm[i][]=fminm[i][]=val[i];
for (int i=; i<maxmi; ++i){
for (int j=; j<=n-(<<i)+; ++j){
fmaxm[j][i]=max(fmaxm[j][i-], fmaxm[j+(<<(i-))][i-]);
fminm[j][i]=min(fminm[j][i-], fminm[j+(<<(i-))][i-]);
}
}
int h=, t=, maxm=;
for (int i=; i<m; ++i){
q=ri();
h=, t=, maxm=;
while (t<=n){
if (dvalue(h, t)<=q) ++t;
else ++h;
if ((t-h)>maxm) maxm=t-h;
}
printf("%d\n", maxm);
}
}
return ;
}

树的直径+rmq+(伪)单调队列 -HDU4123的更多相关文章

  1. 【bzoj1999】[Noip2007]Core树网的核 树的直径+双指针法+单调队列

    题目描述 给出一棵树,定义一个点到一条路径的距离为这个点到这条路径上所有点的距离的最小值.求一条长度不超过s的路径,使得所有点到这条路径的距离的最大值最小. 输入 包含n行: 第1行,两个正整数n和s ...

  2. hdu 4123 Bob’s Race 树的直径+rmq+尺取

    Bob’s Race Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Probl ...

  3. 51Nod.1766.树上最远点对(树的直径 RMQ 线段树/ST表)

    题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq ...

  4. HDU - 5289 Assignment (RMQ+二分)(单调队列)

    题目链接: Assignment  题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...

  5. 求最长的任意两元素差不超过M的子段——双指针+单调队列hdu4123

    换根dp的部分比较容易,难点在于求求最长的任意两元素差不超过M的子段 首先会想到双指针维护(尺取法),如果p1,p2间的max-min>M,那么p1向右移动,直到p1,p2间的max-min&g ...

  6. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  7. HDU 4123 Bob’s Race 树的直径 RMQ

    Bob’s Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=41 ...

  8. 【HDU6701】Make Rounddog Happy【权值线段树+双向单调队列】

    题意:给你一个序列,求满足要求的子序列个数,其中要求为: 1.子序列的max-子序列长度len<=k 2.子序列中不出现重复的数字 题解:首先看到子序列max,很容易想到枚举最大值然后分治,这个 ...

  9. cf1208 E Let Them Slide(差分+RMQ\单调队列)

    题意 如题目的图所示,每行都可以左右移动,但是数字不允许断开,且不许越界(宽度为w). 单独求每一列的最大的和为多少. 思路 对于每一列来说,在每一行上都有一个可以取到的区间, 所以,对于一列来说,答 ...

随机推荐

  1. ES查看segment大小

    摘自:http://www.aboutyun.com/thread-17078-1-1.html Segment Memory Segment不是file吗?segment memory又是什么?前面 ...

  2. Spring JdbcTemplate详解(转)

    原文地址:http://www.cnblogs.com/caoyc/p/5630622.html   尊重原创,请访问原文地址 JdbcTemplate简介 Spring对数据库的操作在jdbc上面做 ...

  3. 2018.5.28 PSOC第一枪:基于cypress的蓝牙开发

    Cypress-BLE 开发套件可以快速开发 物联网电子产品. PSOC编程特点: A 拖放各PSoC 组件到工作区中,以设计原理图B 完成各组件之间的布线,并配置GPIOC 使用所包含的组件API ...

  4. UVA-11020(BST)

    题意: 给n个点,一个点(x,y)有优势时满足不存在点(fx,fy)使得fx<x,fy<=y或fx<=x,fy<y;问当前有多少个有优势点; 思路: 学习BST的入门题,代码是 ...

  5. Git远程克隆仓库出现Permission denied (publickey)

    $ git clone git@github.com:DavidWanderer/test1.git Cloning into 'test1'... Warning: Permanently adde ...

  6. C#添加修改控件css样式

    一.添加属性 MyStyleSheet.Attributes.Add("href","/css/flostyle.css") 二.改变css样式 if (use ...

  7. 用Word编辑cnblogs的博文并发布

    听说可以用Word直接编辑文件发布博客,请教加研究,终于配置成功,先分享如下: 1. 在www.cnblogs.com上注册用户. 2. 打开Word,选择博客文章 3. 点击管理账户,新建或更改,按 ...

  8. POJ1365:质因数分解

    Prime Land Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3590   Accepted: 1623 Descri ...

  9. JS 获取json长度

    var keleyijson={"plug1":"myslider","plug2":"zonemenu"," ...

  10. ES6之箭头函数中的this

    在讲箭头函数中的this之前我们先介绍一下普通函数中的this.      普通函数中的this: (1)this指向它的直接调用者 (2)默认的,非严格模式下,没找到直接调用者则指向window ( ...