1实验环境

实验环境:CPU i7-3770@3.40GHz,内存8G,windows10 64位操作系统

实现语言:python

实验数据:Mnist数据集

程序使用的数据库是mnist手写数字数据库,数据库有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,是一张28*28图片按从上到下从左到右向量化后的结果,60000条数据是随机的。测试数据有10000条。另一个版本是图片版的,按0~9把训练集和测试集分为10个文件夹。这里选取.mat格式的数据源。

2 BP(back propagation)神经网络

是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。从结构上讲,BP网络具有输入层、隐藏层和输出层。

3图像转换成数据

图像是由像素组成,每个像素点由红(Red)、绿(Green)、蓝(Blue)三原色组成的,可用RGB表示。例如一个28*28的图片

放大后

图像可以存储成3个28*28的矩阵,第一个表示R的取值(0~255)、第二个表示G的取值(0~255)、第三个表示B的取值(0~255)。

而本例只表示黑白颜色即可,可以将上图转换为1个28*28的矩阵,白~黑由0~255表示,例如颜色越浅数字越小,0表示白,255表示黑。而mnist的mat格式数据源已经将60000条训练集和10000条测试集做了上述处理。

4感知机

感知机接收一些二元变量,然后输出一个二元变量。

上图的感知机模型有三个输入,一个输出。 怎样计算输出值呢? Rosenblatt提出了一个简单的算法。他引入了新的实数值变量:。用于表示相对于输出变量每个输入变量的重要性(权重)。

通过变化w和 threshold我们就得到了不同的感知机模型。

5 Sigmoid神经元

对于一个神经网络而言,什么是学习?我们可以认为学习就是给定输入,不断的调整各个权重和偏置,以使得神经网络的输出就是我们想要的结果。这就要求神经网络具有一种性质:改变某一个权重或偏置很小的值,整个神经网络的输出也应该改变很小(数学上,函数连续且可导)。否则这种学习就会非常困难。

不幸的是,感知机组成的神经网络就不具有这种性质。很可能你只是靴微改变某一个权重的值,整个神经网络的输出却会发生质变:原来输出0,现在输出1.

碰到这个问题怎么办呢?前人因此引入了一种新的神经元类型:Sigmoid神经元。

不同于感知机的是,输入变量不仅可以取值0或1,还可以取值0和1之间的任何实数!输出值也不局限于0或1,而是sigmoid函数

sigmoid神经元其实可以看作感知机的平滑化

6神经网络结构

三层结构,输入层有28*28=784个节点,隐藏层节点数可以变化,输出层有10个节点,表示0~9,若识别数字为1,则输出结果为0100000000,若识别数字为9,则输出结果为0000000001.

下面说明一下各层的表示和各层的关系:(以15个隐藏层节点为例)

输入层:X=(x1,x2,x3…x784)

隐藏层:Y=(y1,y2,y3…y15)

输出层:O=(o1,o2,o3…o10)

两个权重:

输入层到隐藏层的权重:V=(V1,V2,V3…V784),Vj是一个列向量,表示输入层所有神经元通过Vj加权,得到隐藏层的第j个神经元

隐藏层到输出层的权重:W=(W1,W2,W3…W15),Wk是一个列向量,表示隐藏层的所有神经元通过Wk加权,得到输出层的第k个神经元

根据我们上面说到的单个神经元的刺激传入和刺激传出,相信到这里很多人应该已经得出下面的各层之间的关系了:

注意:上述公式还要加上偏移量

7误差反向传播算法

如何求得W和V呢,这里要用到一种算法,就是误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法。

首先随机地初始化W和V的值,然后代入一些图片进行计算,得到一个输出,当然由于W和V参数不会刚好很完美,输出自然不会是像上文说的,刚好就是{1 0 0 0 0 0 0 0 0 0}这一类,例如{0.7 0 0 0.1 0.2 0 0 0 0 0.1}.所以存在误差,根据这个误差就可以反过来修正W和V的值,修正后的W和V可以使输出更加的靠近于理想的输出,这就是所谓的“误差反向传播”的意思,修正一次之后,再代入其他一些图片,输出离理想输出又靠近了一点,我们又继续计算误差,然后修正W和V的值,就这样经过很多次的迭代计算,最终多次修正得到了比较完美的W和V矩阵,它可以使得输出非常靠近于理想的输出,至此我们的工作完成度才是100%了。

逆向传播算法的数学推导.....(No figures are omitted below)

推导结果:

d表示正确标签,o表示训练输出,y表示隐藏层的值。另外为了使权值调整更加灵活加入一个放缩倍数η(权值学习率)使得,

改变η的大小即可改变每一次调节的幅度,η大的话调节更快,小则调节慢,但是过大容易导致振荡。

8手写体数字识别算法实现步骤

1)      读入训练数据:训练样本、训练样本标签

2)      神经网络配置:参数的初始化(各层节点数、各层权值学习率、各层偏移量等)

3)      激活函数实现:sigmoid函数

4)      训练:60000个数据量的训练集;前向过程,后向过程(反馈调整各层权重和偏移量)

5)      测试:10000个数据量的测试集,获取正确率

9程序结果分析

主要参数:

输入层节点数,隐藏层节点数,输出层节点数,输入层权矩阵,隐藏层权矩阵,输入层偏置向量,隐藏层偏置向量,输入层权值学习率,隐藏层学权值习率

不可变参数:

输入层节点数(784),输出层节点数(10)

随机参数(随机数生成):

输入层权矩阵,隐藏层权矩阵,输入层偏置向量,隐藏层偏置向量

可控参数:

隐藏层节点数,输入层权值学习率,隐藏层学权值习率

隐藏层节点数对算法的影响:

参数表1

隐藏层节点数

10

输入层权值学习率

0.3

隐藏层学权值习率

0.3

结果1(20s)

0

1

2

3

4

5

6

7

8

9

测试集

980

1135

1032

1010

982

892

958

1028

974

1009

正确数

946

1111

860

906

915

754

887

896

800

903

正确率

96.5%

97.9%

83.3%

89.7%

93.2%

84.5%

92.6%

87.2%

82.1%

89.5%

89.78%

参数表2

隐藏层节点数

15

输入层权值学习率

0.3

隐藏层学权值习率

0.3

结果2(27s)

0

1

2

3

4

5

6

7

8

9

测试集

980

1135

1032

1010

982

892

958

1028

974

1009

正确数

948

1117

873

909

872

751

929

898

867

950

正确率

96.7%

98.4%

84.6%

90.0%

88.8%

84.2%

97.0%

87.4%

89.0%

94.2%

91.14%

参数表3

隐藏层节点数

30

输入层权值学习率

0.3

隐藏层学权值习率

0.3

结果3(46s)

0

1

2

3

4

5

6

7

8

9

测试集

980

1135

1032

1010

982

892

958

1028

974

1009

正确数

953

1124

913

963

931

796

919

919

892

952

正确率

97.2%

99.0%

88.5%

95.3%

94.8%

89.2%

95.9%

89.4%

91.6%

94.4%

93.62%

当隐藏层节点数增到100时,算法跑了137s,总正确率为94.94%

算法正确率收敛于95%……算法遇到了瓶颈......

权值学习率对算法的影响:

 

输入节点784,隐藏层节点10,输出层节点10

令输入层和隐藏层权值学习率共用一个参数的条件下,权值学习率n取值范围为[0.1,1]算法正确率最高。

算法手写体数字识别

正确率较高的数字是1、0

正确率较低的数字是2、5

谢 谢!     未 完 待 续 ...

BP神经网络(手写数字识别)的更多相关文章

  1. 基于Numpy的神经网络+手写数字识别

    基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class ...

  2. TensorFlow 卷积神经网络手写数字识别数据集介绍

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...

  3. 深度学习-使用cuda加速卷积神经网络-手写数字识别准确率99.7%

    源码和运行结果 cuda:https://github.com/zhxfl/CUDA-CNN C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是9 ...

  4. 深度学习(一):Python神经网络——手写数字识别

    声明:本文章为阅读书籍<Python神经网络编程>而来,代码与书中略有差异,书籍封面: 源码 若要本地运行,请更改源码中图片与数据集的位置,环境为 Python3.6x. 1 import ...

  5. 神经网络手写数字识别numpy实现

    本文摘自Michael Nielsen的Neural Network and Deep Learning,该书的github网址为:https://github.com/mnielsen/neural ...

  6. BP神经网络的手写数字识别

    BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种 ...

  7. 利用c++编写bp神经网络实现手写数字识别详解

    利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...

  8. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  9. 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)

    上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...

  10. 利用神经网络算法的C#手写数字识别

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...

随机推荐

  1. Password [分块]

    题面 $n,m,x \leq 10^5$ 思路 首先$n=2$做法很多,不讲了 $n=3$的时候,分块维护两个东西:每一个数出现次数的前缀和,和出现次数的出现次数的前缀和(说的有点绕,但是应该挺好理解 ...

  2. POJ 2074 | 线段相交

    #include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #defi ...

  3. WebRTC 视频对话

    今天聊一下WebRTC.很多开发者,可能会觉得有些陌生,或者直接感觉繁杂.因为WebRTC在iOS上的应用,只是编译都让人很是头痛.这些话,到此为止,以防让了解者失去信心.我们只传播正能量,再多的困难 ...

  4. Jsoup 标签选择器 选择img标签中src的值

    package com.enation.newtest; import java.io.BufferedReader; import java.io.File; import java.io.File ...

  5. 行为型设计模式之访问者模式(Visitor)

    结构 意图 表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作. 适用性 一个对象结构包含很多类对象,它们有不同的接口,而你想对这些对象实施一些依 ...

  6. 杭电oj2032、2040、2042、2054、2055

    2032  杨辉三角 #include <stdio.h> int main(){ ][],i,j,n; while(~scanf("%d",&n)){ ;i& ...

  7. Instruments Tutorial for iOS: How To Debug Memory Leaks

    http://www.raywenderlich.com/2696/instruments-tutorial-for-ios-how-to-debug-memory-leaks Update 4/12 ...

  8. 【一】ODB - C++ 访问数据库的利器--Hello World On Windows(Version-24)

    本文以MySQL数据库为例,其他数据类似. 官方文档和下载 ODB官方首页    官方开发者说明书(开发教程) 安装下载首页(下载与安装教程Windows/Linux) Windows安装步骤(都是英 ...

  9. 关闭vs警告

    禁用所有编译器警告 当“解决方案资源管理器”中有项目选中时,在“项目”菜单上单击“属性”. 单击“编译”选项卡. 选中“禁用所有警告”复选框. 禁用单个编译器警告 在“解决方案资源管理器”中选定一个项 ...

  10. 浅谈密码加SALT原理(转载)

    原文出处:http://www.2cto.com/Article/201201/117051.html 我们知道,如果直接对密码进行散列,那么黑客可以对通过获得这个密码散列值,然后通过查散列值字典(例 ...