【BZOJ4810】[YNOI2017] 由乃的玉米田(莫队+bitset)
大致题意: 给你一段序列,每次询问一段区间内是否存在两个数的差或和或积为\(x\)。
莫队算法
看到区间询问+可以离线,首先想到了莫队啊。
但是,在较短的时间内更新信息依然比较难以实现。
于是,我们就要考虑用\(bitset\)了。
关于\(bitset\)
这应该是我第一次使用\(bitset\)吧,所以简单介绍一下它的使用方式。
其作用就相当于存储一个特别大的二进制数。可以把它看成一个\(bool\)数组来使用。
它的好处就在于,它可以直接进行\(\&,|,\text{^},<<,>>\)等各种位运算操作。
它有一个比较常用的函数:\(any()\),用于判断该\(bitset\)是否有某个元素值为\(1\)。
另外,还有一个函数\(count()\)是统计有几个\(1\)。
实际上,了解了这些,我们就可以用\(bitset\)来做这题了。
大致思路
考虑开两个\(bitset\):\(s1\)和\(s2\),其中\(s1_i\)表示值为\(i\)的元素是否存在,\(s2_i\)表示值为\(N-i\)的元素是否存在。
这样一来,似乎就不难处理差值的操作了,答案就是\((s1\&(s1<<x)).any()\),这还是比较好理解的,即判断是否有一个数和比它大\(x\)的数同时存在。
同理可得,和的操作答案就是\((s1\&(s2>>N-x)).any()\)。
对于积的操作就略麻烦了一点,需要枚举因数\(j\),然后判断\(j\)和\(\frac xj\)是否同时存在即可,这个操作是\(O(\sqrt x)\)的。
具体实现可见代码。
代码
#include<bits/stdc++.h>
#define N 100000
#define abs(x) ((x)<0?-(x):(x))
using namespace std;
int n,query_tot,a[N+5];
class Class_FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
char ch,*A,*B,Fin[Fsize];
public:
Class_FIO() {A=B=Fin;}
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
}F;
class Class_CaptainMotao//莫队
{
private:
int block_size,ans[N+5],cnt[N+5];bitset<N+5> s1,s2;
inline void Add(int x) {if(!cnt[a[x]]++) s1[a[x]]=s2[N-a[x]]=1;}//新加一个元素
inline void Del(int x) {if(!--cnt[a[x]]) s1[a[x]]=s2[N-a[x]]=0;}//删除一个元素
public:
struct Query
{
int l,r,val,op,pos,bl;
inline friend bool operator < (Query x,Query y) {return x.bl^y.bl?x.bl<y.bl:(x.bl&1?x.r<y.r:x.r>y.r);}
}q[N+5];
inline void Solve()
{
int i,j,L=1,R=0;
for(block_size=sqrt(n),i=1;i<=query_tot;++i) F.read(q[i].op),F.read(q[i].l),F.read(q[i].r),F.read(q[i].val),q[q[i].pos=i].bl=(q[i].l-1)/block_size+1;//读入
for(L=1,R=0,sort(q+1,q+query_tot+1),i=1;i<=query_tot;++i)
{
while(R<q[i].r) Add(++R);while(L>q[i].l) Add(--L);while(R>q[i].r) Del(R--);while(L<q[i].l) Del(L++);
switch(q[i].op)
{
case 1:ans[q[i].pos]=(s1&(s1<<q[i].val)).any();break;//对于差的操作
case 2:ans[q[i].pos]=(s1&(s2>>N-q[i].val)).any();break;//对于和的操作
case 3:for(j=1;1LL*j*j<=q[i].val&&!ans[q[i].pos];++j) !(q[i].val%j)&&s1[j]&&s1[q[i].val/j]&&(ans[q[i].pos]=1);break;//对于积的操作
}
}
for(i=1;i<=query_tot;++i) puts(ans[i]?"yuno":"yumi");//输出答案
}
}C;
int main()
{
register int i;
for(F.read(n),F.read(query_tot),i=1;i<=n;++i) F.read(a[i]);
return C.Solve(),0;
}
【BZOJ4810】[YNOI2017] 由乃的玉米田(莫队+bitset)的更多相关文章
- BZOJ4810:[YNOI2017]由乃的玉米田(莫队,bitset)
Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一 ...
- bzoj4810 [Ynoi2017]由乃的玉米田 莫队+bitset(+数论)
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4810 题解 看数据范围和题目名字应该是根号算法. 因为询问除了区间外,还有第 \(3\) 个参 ...
- 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset
题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...
- bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队
[Ynoi2017]由乃的玉米田 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 917 Solved: 447[Submit][Status][Di ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)
多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...
- bzoj4810 [Ynoi2017]由乃的玉米田
Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一 ...
- 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队
[BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...
- [BZOJ]4810: [Ynoi2017]由乃的玉米田
Time Limit: 30 Sec Memory Limit: 256 MB Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差 ...
- P3674 小清新人渣的本愿 莫队+bitset
ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...
随机推荐
- python之01电脑和操作系统简史
电脑简史 早期计算方式发展 :手指和石头 ->结绳 ->算筹->计算尺 -> 算盘 19岁时(1642),帕斯卡发明了人类有史以来第一台机械计算机——帕斯卡加法器.它是一种系列 ...
- KONG -- 图形化管理(Kong Dashboard)
前面安装的 KONG 的版本是社区版的 1.0.2,官方的 KONG Manager 好像只有企业版才提供.在 github 上找了一个开源的图形化管理应用 -- Kong Dashboard (ht ...
- SQL语法:MySQL系列之四
一.SQL语言的简介和规范 是一种特定目的程序语言,用于管理关系数据库管理系统(RDBMS),或在关系流数据管理系统(RDSMS)中进行流处理. 20世纪70年代,IBM开发出SQL,用于DB2 ...
- 牛客 PUBG
题目链接:点击打开链接 题目大意:跑毒,跑到安全区,每个地方有敌人,输出路线经过的最少敌人的数量:-1是起点. -2是安全区 输入 5 6 6 0 -2 3 4 2 1 2 1 2 2 8 9 7 8 ...
- POJ1023 The Fun Number System
题目来源:http://poj.org/problem?id=1023 题目大意: 有一种有趣的数字系统.类似于我们熟知的二进制,区别是每一位的权重有正有负.(低位至高位编号0->k,第i位的权 ...
- Unity 行为树-共享变量
一.引言 有以下小场景: 节点A:发现了 敌人. 节点B:追逐敌人. 对于同一个敌人物体,节点AB之间是如何传递数据 的呢? 行为树节点AB之间,需要一个中间变量Temp来传递数据. A发现了敌人,将 ...
- BZOJ 4892 [Tjoi2017]dna 哈希+二分
自己简直是傻死了...对于位置想错了... 二分出来的是LCP长度$+1$,即每一次二分出来的最后一个点都是失配的,而就算失配也会跳过这个点:所以当$k<=3$且模式串$s2$的指针$>l ...
- eclipse导入maven项目有时出现web.xml is missing的问题
今天导入一个从Git上pull下来的项目导入eclipse时,报错web.xml is missing,但是我检查了webapp下面的WEB-INF目录下是有web.xml的,然后就纠结了.纠结了半天 ...
- linux目录权限
linux中,有三种不同类型的用户可以对文件或目录进行访问:文件所有者,同组用户,其他用户.所有者一般是文件的创建者,文件所有者自动拥有对该文件的读.写和可执行权限.所有者能允许同组用户有权访问文件, ...
- 来自于51CTO的经典学习资料汇总
移动开发类: 1.2012Android开发热门资料(110个) http://bbs.51cto.com/thread-934023-1.html 2.[绝对给力]Android开发免豆 ...