点此看题面

大致题意: 给你一段序列,每次询问一段区间内是否存在两个数的差或和或积为\(x\)。

莫队算法

看到区间询问+可以离线,首先想到了莫队啊。

但是,在较短的时间内更新信息依然比较难以实现。

于是,我们就要考虑用\(bitset\)了。

关于\(bitset\)

这应该是我第一次使用\(bitset\)吧,所以简单介绍一下它的使用方式。

其作用就相当于存储一个特别大的二进制数。可以把它看成一个\(bool\)数组来使用。

它的好处就在于,它可以直接进行\(\&,|,\text{^},<<,>>\)等各种位运算操作。

它有一个比较常用的函数:\(any()\),用于判断该\(bitset\)是否有某个元素值为\(1\)。

另外,还有一个函数\(count()\)是统计有几个\(1\)。

实际上,了解了这些,我们就可以用\(bitset\)来做这题了。

大致思路

考虑开两个\(bitset\):\(s1\)和\(s2\),其中\(s1_i\)表示值为\(i\)的元素是否存在,\(s2_i\)表示值为\(N-i\)的元素是否存在。

这样一来,似乎就不难处理差值的操作了,答案就是\((s1\&(s1<<x)).any()\),这还是比较好理解的,即判断是否有一个数和比它大\(x\)的数同时存在。

同理可得,和的操作答案就是\((s1\&(s2>>N-x)).any()\)。

对于积的操作就略麻烦了一点,需要枚举因数\(j\),然后判断\(j\)和\(\frac xj\)是否同时存在即可,这个操作是\(O(\sqrt x)\)的。

具体实现可见代码。

代码

#include<bits/stdc++.h>
#define N 100000
#define abs(x) ((x)<0?-(x):(x))
using namespace std;
int n,query_tot,a[N+5];
class Class_FIO
{
private:
#define Fsize 100000
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,Fsize,stdin),A==B)?EOF:*A++)
char ch,*A,*B,Fin[Fsize];
public:
Class_FIO() {A=B=Fin;}
inline void read(int &x) {x=0;while(!isdigit(ch=tc()));while(x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));}
}F;
class Class_CaptainMotao//莫队
{
private:
int block_size,ans[N+5],cnt[N+5];bitset<N+5> s1,s2;
inline void Add(int x) {if(!cnt[a[x]]++) s1[a[x]]=s2[N-a[x]]=1;}//新加一个元素
inline void Del(int x) {if(!--cnt[a[x]]) s1[a[x]]=s2[N-a[x]]=0;}//删除一个元素
public:
struct Query
{
int l,r,val,op,pos,bl;
inline friend bool operator < (Query x,Query y) {return x.bl^y.bl?x.bl<y.bl:(x.bl&1?x.r<y.r:x.r>y.r);}
}q[N+5];
inline void Solve()
{
int i,j,L=1,R=0;
for(block_size=sqrt(n),i=1;i<=query_tot;++i) F.read(q[i].op),F.read(q[i].l),F.read(q[i].r),F.read(q[i].val),q[q[i].pos=i].bl=(q[i].l-1)/block_size+1;//读入
for(L=1,R=0,sort(q+1,q+query_tot+1),i=1;i<=query_tot;++i)
{
while(R<q[i].r) Add(++R);while(L>q[i].l) Add(--L);while(R>q[i].r) Del(R--);while(L<q[i].l) Del(L++);
switch(q[i].op)
{
case 1:ans[q[i].pos]=(s1&(s1<<q[i].val)).any();break;//对于差的操作
case 2:ans[q[i].pos]=(s1&(s2>>N-q[i].val)).any();break;//对于和的操作
case 3:for(j=1;1LL*j*j<=q[i].val&&!ans[q[i].pos];++j) !(q[i].val%j)&&s1[j]&&s1[q[i].val/j]&&(ans[q[i].pos]=1);break;//对于积的操作
}
}
for(i=1;i<=query_tot;++i) puts(ans[i]?"yuno":"yumi");//输出答案
}
}C;
int main()
{
register int i;
for(F.read(n),F.read(query_tot),i=1;i<=n;++i) F.read(a[i]);
return C.Solve(),0;
}

【BZOJ4810】[YNOI2017] 由乃的玉米田(莫队+bitset)的更多相关文章

  1. BZOJ4810:[YNOI2017]由乃的玉米田(莫队,bitset)

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  2. bzoj4810 [Ynoi2017]由乃的玉米田 莫队+bitset(+数论)

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4810 题解 看数据范围和题目名字应该是根号算法. 因为询问除了区间外,还有第 \(3\) 个参 ...

  3. 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset

    题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...

  4. bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队

    [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 917  Solved: 447[Submit][Status][Di ...

  5. LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田

    题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...

  6. BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)

    多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...

  7. bzoj4810 [Ynoi2017]由乃的玉米田

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  8. 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队

    [BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...

  9. [BZOJ]4810: [Ynoi2017]由乃的玉米田

    Time Limit: 30 Sec  Memory Limit: 256 MB Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差 ...

  10. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

随机推荐

  1. (PHP)redis Zset(有序集合 sorted set)操作

    /** * * Zset操作 * sorted set操作 * 有序集合 * sorted set 它在set的基础上增加了一个顺序属性,这一属性在修改添加元素的时候可以指定,每次指定后,zset会自 ...

  2. 《OD学storm》20160828

    一.Storm项目 1. 架构 javasdk -> nginx -> 日志文件 -> flume agent(collector) -> hdfs -> kafka - ...

  3. [APIO2019T1]奇怪装置

    考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...

  4. day20模块作业

    1.模块化作业 1.回顾文件递归遍历. 默写一遍. 入口在: 当文件是个文件夹的时候 出口在: 文件是一个文件 2.计算时间差(用户输入起始时间和结束时间. 计算时间差(小时), 例如, 用户输入20 ...

  5. day10函数作业详解

    1.day10题目 2,写函数,接收n个数字,求这些参数数字的和.(动态传参) 3,读代码,回答:代码中,打印出来的值a,b,c分别是什么?为什么? a=10 b=20 def test5(a,b): ...

  6. mathjax;latex

    \lfloor $\lfloor$ \rfloor $\rfloor$ \sum_{i=1}^{n} $\sum_{i=1}^{n}$ \mu $\mu$ \mid $\mid$ \Leftright ...

  7. Mockito测试 注解

    import static org.mockito.Mockito.*;import static org.junit.Assert.*; import org.springframework.tes ...

  8. linux shell 脚本 历史文件清理脚本,按天,按月,清理前N天的历史文件,删除指定大小历史文件,历史文件归档清理

    不知道大家那有没有要清理的这个事情.需要清理目录历史文件.可能后续也会有很多其他地方需要清理历史文件,可能会用到. 我这两天空闲写了个脚本,清理比较方便,有要进行清理的大量历史文件的话可以用. 脚本用 ...

  9. Java local 转UTC时间

    import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Calendar; impor ...

  10. Storm概念学习系列 之数据流模型、Storm数据流模型

    不多说,直接上干货! 数据流模型 数据流模型是由数据流.数据处理任务.数据节点.数据处理任务实例等构成的一种数据模型.本节将介绍的数据流模型如图1所示. 分布式流处理系统由多个数据处理节点(node) ...