Mobile phones
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 14291   Accepted: 6644

Description

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The
number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with
the row and the column of the matrix. 



Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area. 

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter
integers according to the following table. 




The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and
0 <= Y <= 3. 



Table size: 1 * 1 <= S * S <= 1024 * 1024 

Cell value V at any time: 0 <= V <= 32767 

Update amount: -32768 <= A <= 32767 

No of instructions in input: 3 <= U <= 60002 

Maximum number of phones in the whole table: M= 2^30 

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2
1 1 1 2
1 1 2 -1
2 1 1 2 3
3

Sample Output

3
4

附二维树状数组解法:http://blog.csdn.net/chang_mu/article/details/37739053

题意:点更新。区域查询。

题解:主要的二维线段树。(今天看了非常久才看懂...线段树扩展到二维果然没有树状数组方便,可是一旦想通,会发现思路事实上并不复杂)。

#include <stdio.h>
#define maxn 1026
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1 int tree[maxn * 3][maxn * 3], size; void getSize(){ scanf("%d", &size); } void updateY(int rootX, int pos, int val, int l, int r, int rt)
{
tree[rootX][rt] += val;
if(l == r) return; int mid = (l + r) >> 1;
if(pos <= mid) updateY(rootX, pos, val, lson);
else updateY(rootX, pos, val, rson);
} void updateX(int x, int y, int val, int l, int r, int rt)
{
//更新的任务都交给updateY
updateY(rt, y, val, 0, size - 1, 1);
if(l == r) return; int mid = (l + r) >> 1;
if(x <= mid) updateX(x, y, val, lson);
else updateX(x, y, val, rson);
} void update()
{
int x, y, val;
scanf("%d%d%d", &x, &y, &val);
updateX(x, y, val, 0, size - 1, 1);
} int queryY(int rootX, int y1, int y2, int l, int r, int rt)
{
if(l == y1 && r == y2) return tree[rootX][rt]; int mid = (l + r) >> 1;
if(y2 <= mid) return queryY(rootX, y1, y2, lson);
else if(y1 > mid) return queryY(rootX, y1, y2, rson);
else{
return queryY(rootX, y1, mid, lson) + queryY(rootX, mid + 1, y2, rson);
}
} int queryX(int x1, int x2, int y1, int y2, int l, int r, int rt)
{
if(x1 == l && x2 == r) return queryY(rt, y1, y2, 0, size - 1, 1); int mid = (l + r) >> 1;
if(x2 <= mid) return queryX(x1, x2, y1, y2, lson);
else if(x1 > mid) queryX(x1, x2, y1, y2, rson);
else{
return queryX(x1, mid, y1, y2, lson) + queryX(mid + 1, x2, y1, y2, rson);
}
} void query()
{
int x1, y1, x2, y2;
scanf("%d%d%d%d", &x1, &y1, &x2, &y2); printf("%d\n", queryX(x1, x2, y1, y2, 0, size - 1, 1));
} void (*funArr[])() = {
getSize, update, query
}; int main()
{
int num;
while(scanf("%d", &num), num != 3)
(*funArr[num])();
return 0;
}

POJ1195 Mobile phones 【二维线段树】的更多相关文章

  1. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  2. POJ1195 二维线段树

    Mobile phones POJ - 1195 Suppose that the fourth generation mobile phone base stations in the Tamper ...

  3. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  4. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  5. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  6. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  7. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  8. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

  9. HDU 4819 Mosaic --二维线段树(树套树)

    题意: 给一个矩阵,每次查询一个子矩阵内的最大最小值,然后更新子矩阵中心点为(Max+Min)/2. 解法: 由于是矩阵,且要求区间最大最小和更新单点,很容易想到二维的线段树,可是因为之前没写过二维的 ...

随机推荐

  1. [BZOJ4760][Usaco2017 Jan]Hoof, Paper, Scissors dp

    4760: [Usaco2017 Jan]Hoof, Paper, Scissors Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 136  Solv ...

  2. BZOJ1588 [HNOI2002]营业额统计 splay模板

    1588: [HNOI2002]营业额统计 Time Limit: 5 Sec  Memory Limit: 162 MB Submit: 16189  Solved: 6482 [Submit][S ...

  3. Guava源码学习(三)ImmutableCollection

    基于版本:Guava 22.0 Wiki:Immutable collections 0. ImmutableCollection简介 类似于JDK的Collections.unmodifiableX ...

  4. python 读取excel数据插入到另外一个excel

    #-*-coding:utf-8-*- import xlrd import xlwt def excel_copy(dir_from, dir_to, sheet_name): '''从一个exce ...

  5. (1) SpringBoot创建发布

    一.安装jdk8 https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 二.配置环境 ...

  6. JDBC二部曲之_入门

    JDBC 1 什么是JDBC? JDBC(Java DataBase Connectivity),即Java数据库连接!也就是说,Java程序员可以使用JDBC API来操作数据库. 最早JDBC是J ...

  7. Python的网络编程[0] -> socket[2] -> 利用 socket 建立 TCP/UDP 通信

    Socket 目录 socket 的 TCP/IP 通信基本建立过程 socket 的 UDP 通信基本建立过程 socket 的 UDP 广播式通信基本建立过程 socket 的多线程通信建立过程 ...

  8. [Math Review] Statistics Basics: Main Concepts in Hypothesis Testing

    Case Study The case study Physicians' Reactions sought to determine whether physicians spend less ti ...

  9. Linux下进行Web服务器压力(并发)测试工具http_load、webbench、ab、Siege、autobench简单使用教程(转)

    一.http_load 程序非常小,解压后也不到100K http_load以并行复用的方式运行,用以测试web服务器的吞吐量与负载.但是它不同于大多数压力测试工 具,它可以以一个单一的进程运行,一般 ...

  10. ubuntu配置无密码登录

    1 本地生成ssh公钥和私钥, 2将公钥拷贝到ubuntu上的.ssh/authorized_keys 中