题目描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入输出格式

输入格式:

输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

输出格式:

输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

输入输出样例

输入样例#1: 复制

1 2 3 4 5
输出样例#1: 复制

4

说明

各个测试点2s

$$x+S*m\%L-(y+S*n)\%L=0$$

$$x-y+S*(m-n)+L*p=0$$

$$S*(m-n)+L*p=y-x$$

这样就化简成了ax+by的形式

 #include<cstdio>
#include<cstdlib>
#include<algorithm>
#define LL long long
using namespace std;
const LL MAXN=;
inline LL read()
{
char c=getchar();LL x=,flag=;
while(c<''||c>'') {if(c=='-') flag=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-,c=getchar();return x*flag;
}
LL gcd(LL a,LL b)
{
return b==?a:gcd(b,a%b);
}
inline void IM()
{
printf("Impossible");
exit();
}
LL x,y;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(b==) { x=,y=;return a;}
LL r=exgcd(b,a%b,x,y);
LL tmp=x;
x=y;y=tmp-(a/b)*y;
return r;
}
LL bgx,bgy,stepm,stepn,L;
int main()
{
bgx=read(),bgy=read(),stepm=read(),stepn=read(),L=read();
if(stepm-stepn<) swap(stepm,stepn),swap(bgx,bgy);
if((bgy-bgx)%gcd((stepm-stepn),L)!=) IM(); LL r=exgcd(stepm-stepn,L,x,y);
x=x*(bgy-bgx)/r,
L=L/gcd(stepm-stepn,L); x=(x%L+L)%L;//处理x可能为负
printf("%lld",x);
return ;
}
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define LL long long
inline LL read()
{
char ch=getchar();LL x=,f=;
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'',ch=getchar();}
return x*f;
}
LL x,y;
LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(b==)
{
x=;y=;
return a;
}
LL r=exgcd(b,a%b,x,y);
LL tmp=x;x=y;y=tmp-a/b*y;
return r;
}
int main()
{
LL x0=read(),y0=read(),m=read(),n=read(),L=read();
if(m<n) swap(x0,y0),swap(n,m);
LL gcd=exgcd(m-n,L,x,y);
if( (y0-x0)%gcd!= ){printf("Impossible");return ;}
x=x*(y0-x0)/gcd;L=abs(L/gcd)*(y0-x0);
x=(x%L+L)%L;//处理x可能为负
printf("%lld",x);
return ;
}

洛谷P1516 青蛙的约会的更多相关文章

  1. 洛谷 P1516 青蛙的约会 解题报告

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  2. 洛谷——P1516 青蛙的约会

    P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  3. 洛谷 p1516 青蛙的约会 题解

    dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...

  4. 洛谷P1516 青蛙的约会(扩展欧几里德)

    洛谷题目传送门 很容易想到,如果他们相遇,他们初始的位置坐标之差\(x-y\)和跳的距离\((n-m)t\)(设\(t\)为跳的次数)之差应该是模纬线长\(l\)同余的,即\((n-m)t\equiv ...

  5. 洛谷 P1516 青蛙的约会

    https://www.luogu.org/problemnew/show/P1516#sub 题意还是非常好理解的..... 假如这不是一道环形的跑道而是一条直线,你会怎样做呢? 如果是我就会列一个 ...

  6. P1516 青蛙的约会和P2421 [NOI2002]荒岛野人

    洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...

  7. 【题解】P1516 青蛙的约会(Exgcd)

    洛谷P1516:https://www.luogu.org/problemnew/show/P1516 思路: 设两只青蛙跳了T步 则A的坐标为X+mT   B的坐标为Y+nT 要使他们相遇 则满足: ...

  8. P1516 青蛙的约会

    P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...

  9. 解题报告:luogu P1516 青蛙的约会

    题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...

随机推荐

  1. Docker学习笔记-两种发布方式

    第一种,自己手写dockerfile发布,上传至hubDocker 正常发布到文件夹中,发布文件上传至linux机器上.如 /www/app 将Dockerfile文件也复制到同目录 ./www/ap ...

  2. Docker学习笔记-磁盘挂载运行.netcore

    前言: 环境:centos7.5 64 位 正文: 首先我们在宿主机上安装 .NET Core SDK sudo rpm --import https://packages.microsoft.com ...

  3. puppet-type

    puppet语法-type Table of Contents Custom Source 基本技能要求 Types简介 Type-Documentation Type-Properties Type ...

  4. JDK下载API文档

    JDK官方下载 JDK1.5 : http://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD ...

  5. IDEA整合Junit详细步骤

    一.添加Junit插件. 1.file-->setting-->plugins-->搜索Junit-->安装插件(一般已默认安装,无需手动安装). 二.设置Junit测试参数: ...

  6. 基于.net core 2.0+mysql+AceAdmin搭建一套快速开发框架

    前言 .net core已经出来一段时间了,相信大家对.net core的概念已经很清楚了,这里就不再赘述.笔者目前也用.net core做过一些项目,并且将以前framework下的一些经验移植到了 ...

  7. preg_replace的一些细节

    .$pattern是数组,$replace也是数组,则中对应的 元素进行替换 php preg_replace有五个参数,有三个是必须参数 Preg_replace(mixed $pattern, m ...

  8. MySQL 分支的选择:Percona 还是 MariaDB

    原文:https://www.biaodianfu.com/mysql-percona-or-mariadb.html 在MySQL被Oracle收购以后,越来越多的人对于MySQL的前景表示了担忧, ...

  9. linux 命令 — cut

    cut 以列的方式格式化输出 依赖定界符 cut -f field_list filename 以默认定界符(tab,制表符)分割文件的列,输出指定的列field_list,field_list由列号 ...

  10. python练习七—P2P下载

    最近有些事儿比较忙,python的学习就断断续续,这个练习来得比预期的晚,不过还好,不管做什么,我都希望能认真对待,认真做好每一件事. 引入 这个练习原书中称作“使用XML-RPC进行文件共享”,题目 ...