Bagging 和 Boosting 都属于机器学习中的元算法(meta-algorithms)。所谓元算法,简单来讲,就是将几个较弱的机器学习算法综合起来,构成一个更强的机器学习模型。这种「三个臭皮匠,赛过诸葛亮」的做法,可以帮助减小方差(over-fitting)和偏差(under-fitting),提高准确率。

狭义的理解:Bagging,Boosting 为这种元算法的训练提供了一种采样的思路。

Boosting

Boosting 最著名的实现版本应该是 AdaBoost 了。

Boosting 的流程一般为:

  1. 从数据集 D 中,无放回地、随机地挑选出一个子集 d1,训练一个弱的分类器 C1;
  2. 从数据集 D 中,无放回地、随机地挑选出一个子集 d2,再加上一部分上一步被错分类的样本,训练一个弱分类器 C2;
  3. 重复步骤 2,直到所有分类器都训练完毕;
  4. 综合所有的弱分类器,并为每个分类器赋予一个权值。

Bagging

采用 Bagging 原理的机器学习算法,代表的有 Random Forest(有些许改进)。

理解 Bagging 之前,需要先简单了解一下 Bootstrap 的概念。Bootstrap 是一种有放回的随机采样过程(注意,Boosting 是无放回的)。

Bagging 指的其实是 Bootstrap AGGregatING,「aggregating」是聚合的意思,也就是说,Bagging 是 Bootstrap 的增强版。

Bagging 的流程一般为:

  1. 根据 bootstrap 方法,生成 n 个不同的子集;
  2. 在每个子集上,单独地训练弱分类器(或者说,子机器学习模型);
  3. 预测时,将每个子模型的预测结果平均一下,作为最终的预测结果。

Bagging 和 Boosting 对比

Bagging 这种有放回的采样策略,可以减少 over-fitting,而 Boosting 会修正那些错分类的样本,因此能提高准确率(但也可能导致 overfitting )。

Bagging 由于样本之间没有关联,因此它的训练是可以并行的,比如 Random Forest 中,每一棵决策树都是可以同时训练的。Boosting 由于需要考虑上一步错分类的样本,因此需要顺序进行。

参考

Bagging, Boosting, Bootstrap的更多相关文章

  1. 快速理解bootstrap,bagging,boosting,gradient boost-三个概念

      1 booststraping:意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法. 其核心思想和基本步骤如下: (1 ...

  2. Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别

    Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...

  3. Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别

    引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...

  4. 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting

    Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...

  5. Ensemble Learning: Bootstrap aggregating (Bagging) & Boosting & Stacked generalization (Stacking)

    Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...

  6. 机器学习 - 算法 - 集成算法 - 分类 ( Bagging , Boosting , Stacking) 原理概述

    Ensemble learning - 集成算法 ▒ 目的 让机器学习的效果更好, 量变引起质变 继承算法是竞赛与论文的神器, 注重结果的时候较为适用 集成算法 - 分类 ▒ Bagging - bo ...

  7. 机器学习入门-集成算法(bagging, boosting, stacking)

    目的:为了让训练效果更好 bagging:是一种并行的算法,训练多个分类器,取最终结果的平均值 f(x) = 1/M∑fm(x) boosting: 是一种串行的算法,根据前一次的结果,进行加权来提高 ...

  8. 集成算法(Bagging & Boosting)

    用多种分类器一起完成同一份任务 Bagging策略(有放回的,随机的,子集大小一样的,m个训练集用同一个模型) Boosting-提升策略(串联) AdaBoost算法

  9. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

随机推荐

  1. python自动化开发-[第十七天]-django的ORM与其他

    今日概要: 1.name别名 2.模版的深度查询 3.模版语言之filter 4.自定义过滤器,filter和simpletag的区别 5.orm进阶 扫盲:url的组成 URL:协议+域名+端口+路 ...

  2. python3.x 和pip3的安装

    python3.x 和pip3的安装 本人在学习python3的时候,视频中使用的是python3,在讲解到有些第三方库的时候,无法使用到pip3 install来安装所需的库.由于系统是centos ...

  3. windows server 2008 远程连接

    1.win2008如何开启远程桌面 原文:https://zhidao.baidu.com/question/745350052927250652.html 正常的开启操作: 在桌面上右点" ...

  4. JAVA核心技术I---JAVA基础知识(常量设计和常量池)

    一:常量---一种不会修改的变量 –Java没有constant关键字 –不能修改,final –不会修改/只读/只要一份,static –方便访问publicJava中的常量 –public sta ...

  5. java用流的方式加载图片

    前端: <img ng-show="photo" class="vertical_b" id="photoImg" src=" ...

  6. webapi快速开发框架

    一.webapi快速开发框架搭建之后台 从0开始搭建webapi基本框架.权限控制.异常管理.日志管理.缓存管理 源码:https://github.com/shengyu-kmust/webapi ...

  7. idea创建父子工程

    第一步:创建一个新的父工程father:file—–>new—->project ,注意要选maven,Create from archetype不要勾选.next填写GroupId .A ...

  8. HDU 1011(星河战队 树形DP)

    题意是说在一个洞穴中有许多房间,每个房间中有一些虫子和大脑,这些房间之间用隧道相连形成一棵树,士兵们杀虫子的能力有限,也可以直接杀死虫子而不消耗士兵战斗力,但这样就无法得到房间中的大脑,士兵们不能走回 ...

  9. 046、创建Docker Machine(2019-03-11 周一)

    参考https://www.cnblogs.com/CloudMan6/p/7237420.html   对于Docker Machine来说,属于 Machine 就是运行docker daemon ...

  10. Python中late-binding-closures

    2018-01-03 @望京 示例1 >>> b = [] >>> for i in range(5): ... b.append(lambda :i) ... & ...