Bagging 和 Boosting 都属于机器学习中的元算法(meta-algorithms)。所谓元算法,简单来讲,就是将几个较弱的机器学习算法综合起来,构成一个更强的机器学习模型。这种「三个臭皮匠,赛过诸葛亮」的做法,可以帮助减小方差(over-fitting)和偏差(under-fitting),提高准确率。

狭义的理解:Bagging,Boosting 为这种元算法的训练提供了一种采样的思路。

Boosting

Boosting 最著名的实现版本应该是 AdaBoost 了。

Boosting 的流程一般为:

  1. 从数据集 D 中,无放回地、随机地挑选出一个子集 d1,训练一个弱的分类器 C1;
  2. 从数据集 D 中,无放回地、随机地挑选出一个子集 d2,再加上一部分上一步被错分类的样本,训练一个弱分类器 C2;
  3. 重复步骤 2,直到所有分类器都训练完毕;
  4. 综合所有的弱分类器,并为每个分类器赋予一个权值。

Bagging

采用 Bagging 原理的机器学习算法,代表的有 Random Forest(有些许改进)。

理解 Bagging 之前,需要先简单了解一下 Bootstrap 的概念。Bootstrap 是一种有放回的随机采样过程(注意,Boosting 是无放回的)。

Bagging 指的其实是 Bootstrap AGGregatING,「aggregating」是聚合的意思,也就是说,Bagging 是 Bootstrap 的增强版。

Bagging 的流程一般为:

  1. 根据 bootstrap 方法,生成 n 个不同的子集;
  2. 在每个子集上,单独地训练弱分类器(或者说,子机器学习模型);
  3. 预测时,将每个子模型的预测结果平均一下,作为最终的预测结果。

Bagging 和 Boosting 对比

Bagging 这种有放回的采样策略,可以减少 over-fitting,而 Boosting 会修正那些错分类的样本,因此能提高准确率(但也可能导致 overfitting )。

Bagging 由于样本之间没有关联,因此它的训练是可以并行的,比如 Random Forest 中,每一棵决策树都是可以同时训练的。Boosting 由于需要考虑上一步错分类的样本,因此需要顺序进行。

参考

Bagging, Boosting, Bootstrap的更多相关文章

  1. 快速理解bootstrap,bagging,boosting,gradient boost-三个概念

      1 booststraping:意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法. 其核心思想和基本步骤如下: (1 ...

  2. Jackknife,Bootstrap, Bagging, Boosting, AdaBoost, RandomForest 和 Gradient Boosting的区别

    Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统 ...

  3. Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting的区别

    引自http://blog.csdn.net/xianlingmao/article/details/7712217 Jackknife,Bootstraping, bagging, boosting ...

  4. 【机器学习】Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting

    Jackknife,Bootstraping, bagging, boosting, AdaBoosting, Rand forest 和 gradient boosting 这些术语,我经常搞混淆, ...

  5. Ensemble Learning: Bootstrap aggregating (Bagging) & Boosting & Stacked generalization (Stacking)

    Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...

  6. 机器学习 - 算法 - 集成算法 - 分类 ( Bagging , Boosting , Stacking) 原理概述

    Ensemble learning - 集成算法 ▒ 目的 让机器学习的效果更好, 量变引起质变 继承算法是竞赛与论文的神器, 注重结果的时候较为适用 集成算法 - 分类 ▒ Bagging - bo ...

  7. 机器学习入门-集成算法(bagging, boosting, stacking)

    目的:为了让训练效果更好 bagging:是一种并行的算法,训练多个分类器,取最终结果的平均值 f(x) = 1/M∑fm(x) boosting: 是一种串行的算法,根据前一次的结果,进行加权来提高 ...

  8. 集成算法(Bagging & Boosting)

    用多种分类器一起完成同一份任务 Bagging策略(有放回的,随机的,子集大小一样的,m个训练集用同一个模型) Boosting-提升策略(串联) AdaBoost算法

  9. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

随机推荐

  1. Linux中rpm的使用

    1.安装 rpm -i 需要安装的包文件名 举例如下: rpm -i example.rpm 安装 example.rpm 包: rpm -iv example.rpm 安装 example.rpm ...

  2. bzoj2333 离线 + 线段树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来 ...

  3. Intellij Idea识别Java Web项目

    使用maven生成一个Java项目,手动添加相应的web目录WEB_INF,web.xml等,此时idea没有自动识别为web项目,此时编辑web.xml文件会出现一些不该出现的错误,需要做的就是让i ...

  4. vmware centos7 网络配置

    1. 在vmware创建centos虚拟机 2. 在cmd下看一下本机所处的网段,并对一下vmware上的配置 如果同样处于同一网段(192.168.aaa.bbb,aaa处一致就行),就可以直接开机 ...

  5. How-to: Do Statistical Analysis with Impala and R

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  6. Maven 本地资源库配置

    Maven 本地资源库配置 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.操作系统环境 1>.查看操作系统环境(总共3台虚拟机) 2>.关闭防火墙并禁用开机自启动( ...

  7. NGUI-实例化问题

    大家好,我是蜀云泉,我的博客存在的不足之处,希望大家包涵. 我在研究NGUI的时候发现一个问题.在NGUI下实例化物体,其坐标总是位于原点,也就是UIRoot的(0,0,0)处,困惑了好几天我才发现N ...

  8. C#设计模式(14)——模板方法模式

    1.模板方法模式介绍 提到模板我们经常会想到简历模板/PPT模板等,以简历模板为例,不同的人可以使用一样的简历模板,在填充内容时根据自己的名字/工作经历等填写自己的内容,从而形成不同的简历.在OO中模 ...

  9. 引用mchange-commons-java-0.2.3.4.jar架包

    pom.xml中增加 <!-- https://mvnrepository.com/artifact/com.mchange/mchange-commons-java --> <de ...

  10. Silverlight程序之修改命名空间

    有时候,为了使用已有的代码,可能需要更改主程序的命名空间,以生成新的应用.修改命名空间,不能胡乱一通全部使用“替换”,否则程序可能无法正常运行.通过笔者实践,主要有以下几个地方需要注意(以WebGIS ...