【使用场景】

  对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,经过sample或日志、界面定位,发生了数据倾斜。

【解决方案】

  局部聚合+全局聚合,进行两阶段聚合。具体为:

  将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。

  •   第一步:给key倾斜的dataSkewRDD中每个key都打上一个随机前缀。

  例如10以内的随机数,此时原先一样的key,包括集中倾斜的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(5_hello, 1) (3_hello, 1) (3_hello, 1) (5_hello, 1) (8_hello, 1) (5_hello, 1) ...

  •   第二步:对打上随机前缀的key不再倾斜的randomPrefixRdd进行局部聚合。

  接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合时,就不会数据倾斜了。此时,第一步局部聚合的结果,变成了(5_hello, 3) (3_hello, 2) (8_hello, 1)

  •   第三步:局部聚合后,去除localAggRdd中每个key的随机前缀。

  此时,第二步局部聚合的结果,变成了(hello, 3) (hello, 2) (hello, 1)

  •   第四步:对去除了随机前缀的removeRandomPrefixRdd进行全局聚合。

  得到最终结果(hello, 6)

【方案优点

  对于聚合类的shuffle操作导致的数据倾斜,效果不错,通常都可以解决数据倾斜问题,至少大幅缓解数据倾斜,将Spark作业的性能提升数倍以上。

 

【代码实现】

  代码实现:https://github.com/wwcom614/Spark

  Java版实现

  Scala版实现

【Spark调优】聚合操作数据倾斜解决方案的更多相关文章

  1. 【Spark调优】数据倾斜及排查

    [数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或j ...

  2. spark调优篇-数据倾斜(汇总)

    数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 ...

  3. Spark 调优之数据倾斜

    什么是数据倾斜? Spark 的计算抽象如下 数据倾斜指的是:并行处理的数据集中,某一部分(如 Spark 或 Kafka 的一个 Partition)的数据显著多于其它部分,从而使得该部分的处理速度 ...

  4. 【Spark调优】小表join大表数据倾斜解决方案

    [使用场景] 对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(例如几百MB或者1~2GB),比较适用此方案. [解决方案] ...

  5. 【Spark调优】Broadcast广播变量

    [业务场景] 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广 ...

  6. 【Spark调优】大表join大表,少数key导致数据倾斜解决方案

    [使用场景] 两个RDD进行join的时候,如果数据量都比较大,那么此时可以sample看下两个RDD中的key分布情况.如果出现数据倾斜,是因为其中某一个RDD中的少数几个key的数据量过大,而另一 ...

  7. Spark调优指南

    Spark相关问题 Spark比MR快的原因? 1) Spark的计算结果可以放入内存,支持基于内存的迭代,MR不支持. 2) Spark有DAG有向无环图,可以实现pipeline的计算模式. 3) ...

  8. spark 调优概述

    分为几个部分: 开发调优.资源调优.数据倾斜调优.shuffle调优 开发调优: 主要包括这几个方面 RDD lineage设计.算子的合理使用.特殊操作的优化等 避免创建重复的RDD,尽可能复用同一 ...

  9. Spark调优秘诀——超详细

    版权声明:本文为博主原创文章,转载请注明出处. Spark调优秘诀 1.诊断内存的消耗 在Spark应用程序中,内存都消耗在哪了? 1.每个Java对象都有一个包含该对象元数据的对象头,其大小是16个 ...

随机推荐

  1. my new blog

    博客迁移至: https://www.dboop.com/

  2. EasyPR源码剖析(1):概述

    EasyPR(Easy to do Plate Recognition)是本人在opencv学习过程中接触的一个开源的中文车牌识别系统,项目Git地址为https://github.com/liuru ...

  3. 201621123002《Java程序设计》第十周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 结合题集题目7-1回答 1.1 自己以前编写的代码中经常出现 ...

  4. 最小化webpack项目

    先把代码贴出来,以后慢慢加说明 参考资料:入门 Webpack,看这篇就够了 / webpack 搭建自动打开,刷新浏览器 一.功能代码1.index.html <!DOCTYPE html&g ...

  5. ssh多台主机之间不用密码远程

    二.多台服务器相互无密码访问 多台服务器相互无密码访问,与两台服务器单向无密码访问的原理是一样的,只不过由于是多台服务器之间相互无密码访问,不能象两台服务器无密码登录那样直接上传,步骤如下: 1.在需 ...

  6. Java容器-个人整理1

    1.初始化集合时,若能知道知道容量,尽量初始化时确定容量.容器类一般可以自动扩充,但扩充是有性能代价的. 2.Arrays.asList()的底层表示仍然时数组,因此不能进行调整尺寸的操作. 3.Ha ...

  7. 检查SQL Server被哪个进程占用,且杀进程。

    -----检查DB的名字---------------------------------------DECLARE @dbName varchar(50)SET @dbName='RegisterO ...

  8. JAVA微信支付~

    1,简单说明 现在好多项目上都需要用到微信支付接口,官方文档上也是简单的描述了下,技术不高深的真的难以理解(我自己看官方文档就看不懂),还是需要自己收集,总结, 网上看了好多 有些照着弄最后还是没法成 ...

  9. 小白的CTF学习之路7——内存与硬盘

    前天去网吧跟朋友包宿,导致昨天一整天都报废,今天早上研究了一下nethunter导致手机成功变砖,感冒不停地咳嗽,这些理由应该足够我前两天拖更了吧,下面开始正题 磁盘学习路线 虚拟缓存 虚拟内存 节约 ...

  10. consul搭建

    1.准备3台服务器 linux1 192.168.0.101 linux2 192.168.0.102 linux3 192.168.0.103 2.准备向Linux上传文件的工具Winscp 3.去 ...