初见

一些课程

Andrew Ng的网络课程

Andrew Ng的机器学习课程

莫烦

HomePage:https://morvanzhou.github.io/

网易云课堂:https://study.163.com/provider/1111519/index.htm

GitHub:https://github.com/MorvanZhou/

推荐学习顺序:https://morvanzhou.github.io/learning-steps/

100-Days-Of-ML-Code

台大李宏毅的课程

一些书目

《Machine Learning Yearning》

来自Andrew Ng的免费AI技术指南

《DeepLearning》

是一本皆在帮助学生和从业人员进入机器学习领域的教科书,以开源的形式免费在网络上提供,因图书封面为杜鹃花景色,俗称“花书”;

关于花书的经验法则:

阅读建议:
- 为了补充基础可以阅读第1-5章,其中也包含了一些数学知识;
- 只关注主流神经网络知识可以阅读6-10章,介绍了DNN/CNN/RNN;
- 需要进一步了解一些调参和应用技巧,推荐阅读11和12章;
- 第13-20章为进阶章节,在入门阶段没有必要阅读;
- 按章节阅读耗时耗力的,建议的做法是吴恩达的课程讲到什么概念,到这本书里面可以相应阅读来理解,

《机器学习》

  • 豆瓣读书:https://book.douban.com/subject/26708119/
  • 因图书封面为西瓜图案,俗称“西瓜书”。
  • 大而全的书籍,因为篇幅的限制,涵盖了很多的内容但无法详细讲解,对于零基础的初学者实际阅读难度很大。
  • 阅读建议:将其作为参考书而不是主力阅读书,在入门阶段只阅读前十章即可。

pumpkin-book

南瓜书来源于西瓜书,由 开源组织Datawhale 发起,将西瓜书中1-7章节的公式进行了整理,对西瓜书中难点公式进行了详解,有跳跃性的公式进行了补充

南瓜书是西瓜书的公式推导版,里面的内容都是以西瓜书的内容为前置知识进行表述,所以南瓜书的最佳使用方法 是以西瓜书为主线,遇到自己推导不出来或者看不懂的公式时再来查阅南瓜书。

一些建议

1- 直接从主干和核心内容开始

机器学习涉及概率论、线性代数、计算机、神经科学等多方面,很多内容对初学者而言,晦涩难懂,过程极其枯燥。
如果从最底层的理论知识开始学起,试图补全知识结构,将耗费大量时间,造成“懈怠学习”,容易半途而废。
不要试图将八成的时间来啃这两成的内容,它们不是实际应用中需要重点了解的部分。
你的业务需求和应用目标对应着学习的路径、要达到的实际应用水平。
如果不是想成为“优化大师”,那么只需要将这些基础理论知识当做工具,而不是目的。
建议:不要试图掌握所有相关理论知识再开始学习,而是应该在学习和使用的过程中,哪里不会补哪里,这样更有目的性且耗时更低。

2- 搭建一个简单的运行环境和模型

作为初学者,最好先从顶层框架上有个大概性的系统认识,然后再从实践到理论,在实际学习和应用的过程中,有的放矢的查缺补漏知识点。
从宏观到微观,从整体到细节,更有利于机器学习快速入门。
建议:从独立搭建一个简单的回归模型开始,从实际案例中获取直观体验,更能激发学习积极性。

3- 不要收集过多的资料

过多的资料,很多时候会让绝大多数人产生“自我安慰和欺骗”的错觉:“感觉良好”,“以后一定会好好学习,取得进步”。
繁杂的内容,则会让人容易陷入到一种迷茫和焦虑的状态。
建议:避免单纯的“信息收集”,贪多嚼不烂,不仅浪费精力而且分散注意力,最终真正有效的信息往往是“少而精”的。

4- 分辨信息的局限性

机器学习的发展和变化速度很快,相关信息爆发性增长的同时,这些信息往往时效性也很强。
很少有信息永远是对的,信息的价值都是放在“某个标准和环境”之下才得以体现,只适用于特定环境和某个时期。
因此在使用这些信息时,最重要的就是独立思考、去伪存真的能力,不要急着全盘接受,也不要因为“没有眼缘”而全盘否定。
建议:避免过时的“大部头”资料,而是应该选择“小而新”的,例如:购买最近三年以内出版且口碑良好的书籍、查看官网最新信息等。

5- 有效的投入与坚持

如果说以上几条是技巧性的学习方法,那么这一条则是对初学者唯一的硬性要求。
有目的,讲方法,别蛮干,可以尝试着与自身的工作经历结合起来。
对特定领域的深刻理解往往就是捅破窗户的那最后一层纸,只理解模型但不了解数据和数据背后的意义,导致很多机器学习模型只停留在好看而不实用的阶段。
通过跨领域完全可以做到曲线救国,化劣势为优势,可能比只懂机器学习的人有更大的行业价值。
机器学习没有那么高不可攀,没有必要放弃自己的本专业全职转行,沉没成本太高。

关于数学

  • 线性代数:矩阵以及计算、线性变换、SVD(Singular Value Decomposition,奇异值分解)
  • 概率论与数理统计:概率基础、随机向量与分布、总体/样本参数估计、随机过程与采样
  • 其它数学知识点:梯度、一阶二阶导数、微积分、数值计算与优化

一些资源

笔记

汇总

算法

GitHub札记

- MLEveryday/100-Days-Of-ML-Code
- scutan90/DeepLearning-500-questions
- fengdu78/deeplearning_ai_books
- fengdu78/Coursera-ML-AndrewNg-Notes
- https://github.com/apachecn/
- apachecn/AiLearning
- apachecn/python_data_analysis_and_mining_action
- MorvanZhou/Tensorflow-Tutorial
  • MorvanZhou/tutorials

AI - 学习路径(Learning Path)的更多相关文章

  1. AI学习路径

  2. Comprehensive learning path – Data Science in Python深入学习路径-使用python数据中学习

    http://blog.csdn.net/pipisorry/article/details/44245575 关于怎么学习python,并将python用于数据科学.数据分析.机器学习中的一篇非常好 ...

  3. NodeJS学习笔记 (24)本地路径处理-path(ok)

    模块概览 在nodejs中,path是个使用频率很高,但却让人又爱又恨的模块.部分因为文档说的不够清晰,部分因为接口的平台差异性. 将path的接口按照用途归类,仔细琢磨琢磨,也就没那么费解了. 获取 ...

  4. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  5. 机器学习——深度学习(Deep Learning)

    Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,近期研究了机器学习中一些深度学习的相关知识,本文给出一些非常实用的资料和心得. Key W ...

  6. TensorFlow 中文资源全集,官方网站,安装教程,入门教程,实战项目,学习路径。

    Awesome-TensorFlow-Chinese TensorFlow 中文资源全集,学习路径推荐: 官方网站,初步了解. 安装教程,安装之后跑起来. 入门教程,简单的模型学习和运行. 实战项目, ...

  7. AI学习经验总结

    我的人工智能学习之路-从无到有精进之路 https://blog.csdn.net/sinox2010p1/article/details/80467475 如何自学人工智能路径规划(附资源,百分百亲 ...

  8. Java Learning Path(三)过程篇

    Java Learning Path(三)过程篇 每个人的学习方法是不同的,一个人的方法不见得适合另一个人,我只能是谈自己的学习方法.因为我学习Java是完全自学的,从来没有问过别人,所以学习的过程基 ...

  9. (转)机器学习——深度学习(Deep Learning)

    from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立 ...

随机推荐

  1. js 内置对象参考 (Array,String, Math, Data, Number)

    var str = "helloWorld"; var strOne = "helloWorld"; // charAt() 返回在指定位置的字符. var a ...

  2. jmeter手写脚本,使用正则获取cookie(禁用cookies管理器)

    注:这里以bugfree为例 1.bugfree登录时会有重定向,这会导致每个URL都会有.因此要手动获取cookie的时候,需要去掉重定向勾选 正则获取动态PHPsession 获取到值后,放到信息 ...

  3. win10jdk环境变量配置问题:'javac' 不是内部或外部命令,也不是可运行的程序 或批处理文件。

    在编译时报错:'javac' 不是内部或外部命令,也不是可运行的程序 或批处理文件. 原因1:配置Path的时候使用%JAVA_HOME%相对路径配置. 解决:把Path路径改为绝对路径(例:D:\P ...

  4. Java发送手机短信(附代码和解析,亲测有效,简便易操作)

    这个方法用的是中国网建SMS短信通相关依赖进行操作的~~ 很简单,仅需要三步,第二部代码直接复制,不需要修改,第三部中的用户名和密钥修改成自己的即可 <1> 首先需要导入三个jar包 &l ...

  5. Linux学习笔记:nginx基础

    nginx [engine x] is an HTTP and reverse proxy server, a mail proxy server, and a generic TCP/UDP pro ...

  6. 倒谱(Cepstrum)和线性预测倒谱系数(LPCCs)

    倒谱是表示一帧语音数据特征的一个序列.从periodogram estimate of the power spectrum计算得到的倒谱系数,可以用于基音追踪(pitch tracking),然而, ...

  7. 使用ServletContextListener关闭Redisson连接

     ServletContextListener 监听器 在 Servlet API 中有一个 ServletContextListener 接口,它能够监听 ServletContext 对象的生命周 ...

  8. sjms-3 结构型模式

    结构型模式 适配器模式 内容:将一个类的接口转换成客户希望的另一个接口.适配器模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作.两种实现方式:类适配器:使用多继承对象适配器:使用组合 角色 ...

  9. usb 枚举流程简介

    1. 枚举是什么?        枚举就是从设备读取一些信息,知道设备是什么样的设备,如何进行通信,这样主机就可以根据这些信息来加载合适的驱动程序.调试USB设备,很重要的一点就是USB的枚举过程,只 ...

  10. Exp2后门原理与实践_20154305 _ 齐 帅

    Exp2后门原理与实践 20154305 _ 齐 帅 2.1简单后门 一.后门工具介绍 1.netcat(nc.ncat) 是一个底层工具,进行基本的TCP UDP数据收发.常被与其他工具结合使用,起 ...