Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is self-conscious about her messy hairstyle, FJ wants to count the number of other cows that can see the top of other cows' heads.

Each cow i has a specified height hi (1 ≤ h≤ 1,000,000,000) and is standing in a line of cows all facing east (to the right in our diagrams). Therefore, cow i can see the tops of the heads of cows in front of her (namely cows i+1, i+2, and so on), for as long as these cows are strictly shorter than cow i.

Consider this example:

        =
=       =
=   -   =         Cows facing right -->
=   =   =
= - = = =
= = = = = =
1 2 3 4 5 6

Cow#1 can see the hairstyle of cows #2, 3, 4
Cow#2 can see no cow's hairstyle
Cow#3 can see the hairstyle of cow #4
Cow#4 can see no cow's hairstyle
Cow#5 can see the hairstyle of cow 6
Cow#6 can see no cows at all!

Let ci denote the number of cows whose hairstyle is visible from cow i; please compute the sum of c1 through cN.For this example, the desired is answer 3 + 0 + 1 + 0 + 1 + 0 = 5.

Input

Line 1: The number of cows, N
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i.

Output

Line 1: A single integer that is the sum of c 1 through cN.

Sample Input

6
10
3
7
4
12
2

Sample Output

5

题意:
给定N个面向右边的奶牛,我们说一只奶牛a[i],能看到另外一个牛奶的头发当且仅当 有一只奶牛a[j]瞒住,a[j]<a[i],并且j>i 思路:
裸的单调栈,维护一个从栈顶到栈底,严格不减小的栈。 细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll n;
ll a[maxn];
ll r[maxn];
int main()
{
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
}
stack<int> s;
for(int i=n;i>=;i--)
{
while(s.size()&&a[s.top()]<a[i])
{
s.pop();
}
if(s.size())
{
r[i]=s.top();
}else
{
r[i]=n+;
}
s.push(i);
} // repd(i,1,n)
// {
// cout<<r[i]<<" ";
// }
// cout<<endl; ll ans=0ll;
repd(i,,n)
{
ans+=1ll*(r[i]-i-);
// db(r[i]-i-1);
}
cout<<ans<<endl;
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
												

Bad Hair Day POJ - 3250 (单调栈入门题)的更多相关文章

  1. Poj 3250 单调栈

    1.Poj 3250  Bad Hair Day 2.链接:http://poj.org/problem?id=3250 3.总结:单调栈 题意:n头牛,当i>j,j在i的右边并且i与j之间的所 ...

  2. BZOJ1113 海报PLA1(单调栈入门题)

    一,自己思考下 1,先自己思考下 N个矩形,排成一排,现在希望用尽量少的海报去cover住它们. 2,不懂. 着实不懂. 3,分析下,最优性问题对吧,然后就每什么想法了.. 虽然肯定和单调栈和单调队列 ...

  3. POJ 3250 Bad Hair Day【单调栈入门】

    Bad Hair Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24112   Accepted: 8208 Des ...

  4. hdu1506 直方图中最大的矩形 单调栈入门

    hdu1506 直方图中最大的矩形 单调栈入门 直方图是由在公共基线对齐的矩形序列组成的多边形.矩形具有相同的宽度,但可能具有不同的高度.例如,左侧的数字显示了由高度为2,1,4,5,1,3,3的矩形 ...

  5. [Usaco2006 Mar]Mooo 奶牛的歌声(单调栈裸题)

    1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 961  Solved: 679[Submi ...

  6. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  7. poj 2059 单调栈

    题意:求柱状图中最大矩形面积. 单调栈:顾名思义就是栈内元素单调递增的栈. 每次插入数据来维护这个栈,假设当前须要插入的数据小于栈顶的元素,那就一直弹出栈顶的元素.直到满足当前须要插入的元素大于栈顶元 ...

  8. [poj 2796]单调栈

    题目链接:http://poj.org/problem?id=2796 单调栈可以O(n)得到以每个位置为最小值,向左右最多扩展到哪里. #include<cstdio> #include ...

  9. uva 1619 - Feel Good || poj 2796 单调栈

    1619 - Feel Good Time limit: 3.000 seconds   Bill is developing a new mathematical theory for human ...

随机推荐

  1. python3基础知识梳理

    一.数据类型 1.数字 int(整型) long(长整型) float(浮点型) complex(复数) 2.布尔值 True或False 3.字符串   二.变量 变量命名规则: 变量名只能是 字母 ...

  2. June 14. 2018 Week 24th Thursday

    Good friends, good books, and a sleepy conscience: this is the ideal life. 拥有益友.良书和一颗宁静的内心:这就是理想的生活. ...

  3. C3P0连接池温习1

    一.应用程序直接获取数据库连接的缺点 用户每次请求都需要向数据库获得链接,而数据库创建连接通常需要消耗相对较大的资源,创建时间也较长.假设网站一天10万访问量,数据库服务器就需要创建10万次连接,极大 ...

  4. 《Java大学教程》—第14章 抽象、继承和接口

    自测题:1.    解释抽象和抽象数据类型的概念.P333抽象的概念是仅仅关注对象可以完成什么工作,而不必担心如何完成工作的细节.类模板通常被称为抽象数据类型.因为这类数据暴露给用户的所有信息仅仅是方 ...

  5. Custom partition assignment and migration kafka集群扩充迁移指定partition

    The partition reassignment tool can also be used to selectively move replicas of a partition to a sp ...

  6. eshint的配置

    { "strict" : "implied", //文件里面使用"use strict" "undef" : true, ...

  7. html面页与JAVA通过webSocket 通讯

    (原) 往常前后端通讯基本都是以ajax请求或是表单做数据交互的,这是一种无状态的http协议,如果要做tcp协议的数据交互,能想到的技术也就socket了,可如果后端是JAVA,前端如何做socke ...

  8. Hadoop伪分布式模式安装

    一.Hadoop介绍 Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上:而且 ...

  9. Python requests模块解析XML

    检查QQ是否在线(api感觉不准) import requests from xml.etree import ElementTree qq_str = input('please input the ...

  10. 思考与算法:大脑是cpu、思考是算法

    思考与算法:大脑是cpu.思考是算法