已知$f(x)=\ln x+ax+b (a>0)$在区间$[t,t+2],(t>0)$上的最大值为$M_t(a,b)$.若$\{b|M_t(a,b)\ge\ln2 +a\}=R$,则实数$t$的最大值为______


分析:$\min\limits_{b\in R}M_t(a,b)=\dfrac{f(x)_{max}-f(x)_{min}}{2}=\dfrac{f(t+2)-f(t)}{2}=\dfrac{\ln\frac{t+2}{t}+2a}{2}\ge\ln2+a$
化简得$4\le\dfrac{t+2}{t}$故$t\le\dfrac{2}{3}$

练习:已知$f(x)=\ln x-ax-b$,对于任意$a<0,b\in R$都存在$x_0\in[1,m]$使得$|f(x_0)|\ge1$成立,

求实数$m$的范围_____
提示:$\min\limits_{b\in R}M(a,b)=\dfrac{f(x)_{max}-f(x)_{min}}{2}=\dfrac{f(m)-f(1)}{2}\ge1$得$a\le \dfrac{\ln m-2}{m-1}$对$a<0$恒成立,

故$m\ge e^2$

MT【302】利用值域宽度求范围的更多相关文章

  1. 指针直接赋值为整型AND利用宏定义求结构体成员偏移量

    首先我们要更正一个很熟悉的概念,那就是指针不仅仅是“地址”,指针还有一个很重要的特性,那就是“类型”. 指针初始化时,“=”的右操作数; 除外,该语句表示指针为空): 所以 ; 这样的代码是不允许的. ...

  2. Python实现利用最大公约数求三个正整数的最小公倍数示例

    Python实现利用最大公约数求三个正整数的最小公倍数示例 本文实例讲述了Python实现利用最大公约数求三个正整数的最小公倍数.分享给大家供大家参考,具体如下: 在求解两个数的小公倍数的方法时,假设 ...

  3. MT【301】值域宽度

    (2015浙江理科)已知函数$f(x)=x^2+ax+b,(a,b\in R)$.记$M(a,b)$是$|f(x)|$在区间$[-1,1]$上的最大值.(1)证明:当$|a|\ge2$时,$M(a,b ...

  4. MT【62】柯西求三角值域

    求$sinx(\sqrt{cos^2x+24}-cosx)$的范围. 解答:[-5,5] $$\because (sinx \sqrt{cos^2x+24}-cosxsinx)^2$$ $$\le ( ...

  5. [MATLAB] 利用遗传算法函数求目标函数的最优解

    最近接触到了遗传算法以及利用遗传算法求最优解,所以就把这些相关的内容整理记录一下. 一.遗传算法简介(摘自维基百科) 遗传算法(英语:genetic algorithm (GA))是计算数学中用于解决 ...

  6. hdu 1217 利用flord算法求 有环图 2点之间最大值

    Arbitrage                                                      T ime Limit: 2000/1000 MS (Java/Other ...

  7. Python中利用进度条求圆周率

    从祖冲之到现在,圆周率的发展越来越丰富,求法也是越来越快其中: 1.求圆周率的方法: (1)蒙特卡罗法 这是基于“随机数”的算法,通过计算落在单位圆内的点与正方形内的比值来求圆周率PI. 如果一共投入 ...

  8. Python之利用reduce函数求序列的最值及排序

    在一般将Python的reduce函数的例子中,通常都是拿列表求和来作为例子.那么,是否还有其他例子呢?   本次分享将讲述如何利用Python中的reduce函数对序列求最值以及排序.   我们用r ...

  9. poj3254 Corn Fields 利用状态压缩求方案数;

    Corn Fields 2015-11-25 13:42:33 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10658   ...

随机推荐

  1. 初识Python-1

    1,计算机基础. 2,python历史. 宏观上:python2 与 python3 区别: python2 源码不标准,混乱,重复代码太多, python3 统一 标准,去除重复代码. 3,pyth ...

  2. 机器学习第一篇——最近邻kNN

    机器学习监督学习中,根据解决问题的连续性和离散型,分为分类问题和回归问题.最邻近算法kNN是一种最为直接和简便的分类方法. kNN本质上,是计算目标到模型的欧式距离,从而判定目标所属的类别. 首先,在 ...

  3. Factors of Factorial AtCoder - 2286 (N的阶乘的因子个数)(数论)

    Problem Statement You are given an integer N. Find the number of the positive divisors of N!, modulo ...

  4. 斐波那契数列yield表示

    def fib(num): n=0 a,b=0,1 while n<num: print(b) yield a,b=b,a+b n=n+1a=fib(30)next(a)next(a)  

  5. pycharm设置pytest运行程序

  6. PAT L2-016 愿天下有情人都是失散多年的兄妹

    https://pintia.cn/problem-sets/994805046380707840/problems/994805061769609216 呵呵.大家都知道五服以内不得通婚,即两个人最 ...

  7. NGINX Docs | Load Balancing Apache Tomcat Servers with NGINX Open Source and NGINX Plus

    NGINX Docs | Load Balancing Apache Tomcat Servers with NGINX Open Source and NGINX Plushttps://docs. ...

  8. Javascript与C#对变量的处理方式

      先来看一下Javascript的情况(下面所说的基本类型和简单类型是一个意思): Javascript中变量会存在两种情况,一种是基本类型的,一共有五种,有null.Bollean.undefin ...

  9. mybatis generator的maven插件,找不到properties的配置文件错误的解决

    第一次运行的时候,maven插件是正确运行了的 但后面对 maven 的 build节点做了一点修改,就开始报错,找不到 properties标签指定的的数据库连接配置文件了 修改部分如下: 这个操作 ...

  10. python绝对路径和相对路径

    转自https://blog.csdn.net/databatman/article/details/49453953 下面的路径介绍针对windows,其他平台的暂时不是很了解. 在编写的py文件中 ...