题意

(混合图的欧拉回路判定)

给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路.

\(N ≤ 200, M ≤ 1000\)

题解

难点在于无向边. 考虑每个点的度数限制.

我们先对无向边任意定向, 现在每个点都有一个出度和入度的差; 而我们要求最终每个点出度和入度相等.

令它出度减去入度为 \(deg​\) ,如果 \(deg​\) 为奇数那么必不存在欧拉回路,因为每次我们修改一条边的定向,会使得入度 \(+1​\) 出度 \(-1​\) (或者相反)。那么变化后的 \(deg​\) 总为奇数,就绝不可能成为 \(0​\) 了。

然后接下来我们就需要判定之后改变边的定向能否满足要求。因为范围较小,我们继续可以联想到网络流。

首先我们建出超级源 \(S\) 、超级汇 \(T\) 。

  1. 把超级源向所有 \(deg > 0\) 的点 \(p\) 连上 \(S \to p\) 流量为 \(\displaystyle \frac{deg}{2}\) 的边。
  2. 把所有 \(deg < 0\) 的点 \(p\) 向超级汇连上 \(p \to T\) 流量为 \(- \displaystyle \frac{deg}{2}\) 的边。
  3. 把原图中存在的无向边我们连上 \(u \to v\) 流量为 \(1\) 的边。注意此处连 \(u \to v\) 的话,需要一开始假设最初的定向就是 \(u \to v\) 使得 ++ deg[u], -- deg[v];

然后跑一遍网络流得到的流量如果和所有 \(deg > 0\) 的点的 \(deg\) 和相同,那么就是存在一组解的,否则就必不存在。

考虑为什么是这样的,因为我们每次流一条边,相当于把一条边 \(u \to v\) 反向成 \(v \to u\) ,使得给 \(u\) 的入度增加 \(1\) 出度减少 \(1\) ,所以 \(deg\) 会直接减少 \(2\) ,这就是为什么我们一开始流量为 \(\displaystyle |\frac{deg}{2}|\) 的原因。

如果满流的结果刚好是 \(\displaystyle\sum_{deg> 0} deg\) ,意味着所有点都修改正确了。

总结

对于有向图欧拉回路的题,牢记 入度 \(=\) 出度 才存在的性质。

代码

#include<cstdio>
#include<iostream>
#include<queue>
#include<cstdlib>
#include<cstring> #define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
#define Cpy(a, b) memcpy(a, b, sizeof(a))
#define debug(x) cout << #x << ": " << x << endl
#define DEBUG(...) fprintf(stderr, __VA_ARGS__) using namespace std; inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;} inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
} void File() {
#ifdef zjp_shadow
freopen ("1637.in", "r", stdin);
freopen ("1637.out", "w", stdout);
#endif
} int n, m; const int N = 410, M = 5010, inf = 0x7f7f7f7f; namespace Dinic { int Head[N], Next[M], to[M], cap[M], e = 1; inline void add_edge(int u, int v, int flow) { to[++ e] = v; Next[e] = Head[u]; Head[u] = e; cap[e] = flow; } inline void Add(int u, int v, int flow) { add_edge(u, v, flow); add_edge(v, u, 0); } int dis[N], S, T; bool Bfs() {
queue<int> Q; Set(dis, 0); dis[S] = 1; Q.push(S);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
if (u == T) return true;
for (int i = Head[u]; i; i = Next[i]) if (cap[i]) {
int v = to[i];
if (!dis[v]) dis[v] = dis[u] + 1, Q.push(v);
}
}
return false;
} int cur[N];
int Dfs(int u, int flow) {
if (u == T || !flow) return flow;
int res = 0, f;
for (int &i = cur[u]; i; i = Next[i]) if (cap[i]) {
int v = to[i]; if (dis[v] != dis[u] + 1) continue ;
if ((f = Dfs(v, min(flow, cap[i])))) {
cap[i] -= f; cap[i ^ 1] += f;
res += f; if (!(flow -= f)) break;
}
}
if (!res || !flow) dis[u] = 0;
return res;
} int Run() {
int sum_flow = 0;
while (Bfs()) Cpy(cur, Head), sum_flow += Dfs(S, inf);
return sum_flow;
} } using namespace Dinic; int deg[N]; inline bool IsOdd() { For (i, 1, n) if (deg[i] & 1) return true; return false; } int main () { File(); for (int cases = read(); cases; -- cases) { n = read(); m = read(); e = 1;
For (i, 1, n + 2) Head[i] = deg[i] = 0; For (i, 1, m) {
int u = read(), v = read(), type = read();
++ deg[u]; -- deg[v];
if (!type) Add(u, v, 1);
} if (IsOdd()) { puts("impossible"); continue ; } S = n + 1, T = S + 1; int tot = 0;
For (i, 1, n) {
if (deg[i] > 0) Add(S, i, deg[i] >> 1), tot += deg[i] >> 1;
if (deg[i] < 0) Add(i, T, (- deg[i]) >> 1);
}
puts(Run() == tot ? "possible" : "impossible"); } return 0;
}

[POJ 1637] Sightseeing tour(网络流)的更多相关文章

  1. POJ 1637 Sightseeing tour(最大流)

    POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...

  2. 网络流(最大流) POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8628   Accepted: 3636 ...

  3. POJ 1637 Sightseeing tour (混合图欧拉路判定)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6986   Accepted: 2901 ...

  4. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  5. POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6448   Accepted: 2654 ...

  6. POJ 1637 Sightseeing tour

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9276   Accepted: 3924 ...

  7. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  8. POJ 1637 Sightseeing tour 建图+网络流

    题意: 给定一个混合图,所谓混合图就是图中既有单向边也有双向边,现在求这样的图是否存在欧拉回路. 分析: 存在欧拉回路的有向图,必须满足[入度==出度],现在,有些边已经被定向,所以我们直接记录度数即 ...

  9. POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)

    http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...

随机推荐

  1. (Beta)Let's-版本测试报告

    测试中发现的Bug Version 2.0 Bug List 在无活动的活动列表下拉加载会崩溃 不能更改个人头像 用户和活动不显示头像 百度地图无法打开 在某些机型上软件装不上 图片加载有时不加载,有 ...

  2. js基础语法之函数

    普通函数 function foo(a, b){ return a + b; } foo(10, 20) >>> 30 匿名函数 var f = function(){console ...

  3. Python_字符串初识及操作

    字符串初识及操作 str  'alex'.'1235443543'.'[1,2,3]'.可存放少量数据. 索引.切片.步长 索引编号 正向索引 'python' 012345 'p'的正向索引编号为0 ...

  4. beego 各种形式的路由实例

    基本路由 基本路由就是和http.Handle和http.HandleFunc一样都是绑定固定的路径,比如绑定了4个路由映射: 定义的4个控制器中,匹配哪一个路由,就输出对应的控制名. beego.R ...

  5. 面象对象设计原则之七:合成复用原则(Composition/Aggregate Reuse Principle, CARP)

    合成复用原则又称为组合/聚合复用原则(Composition/Aggregate Reuse Principle, CARP),其定义如下: 合成复用原则(Composite Reuse Princi ...

  6. java设计模式:面向对象设计的7个原则

    在软件开发中,为了提高软件系统的可维护性和可复用性,增加软件的可扩展性和灵活性,程序员要尽量根据7条原则来开发程序,从而提高软件开发效率,节约软件开发成本和维护成本. 这7条原则分别是:开闭原则.里氏 ...

  7. java.util (Collection接口和Map接口)

    1:Collection和Map接口的几个主要继承和实现类                  1.1  Collection接口 Collection是最基本的集合接口,一个Collection代表一 ...

  8. C# Note7:MVVM模式之数据绑定

    一.资源说明 (1)本文参考自: 一步步走进WPF的MVVM模式(二):数据绑定 WPF之数据绑定总结 二.正文  数据绑定 (Data Binding)是WPF最重要的特性之一,也是实现 MVVM( ...

  9. word的"bug"

    发表博客发现,从word复制文本到chrome浏览器上的博客时, 如果复制完后立即关闭word,那么将无法粘贴到通过chrome浏览器访问的博客上,也无法粘贴到记事本上: 但是复制完立即关闭word后 ...

  10. Spark 数据倾斜

    Spark 数据倾斜解决方案 2017年03月29日 17:09:58 阅读数:382 现象       当你的应用程序发生以下情况时你该考虑下数据倾斜的问题了: 绝大多数task都可以愉快的执行,总 ...