很久没搞博弈了。先来写个模板:

现在我们来研究一个看上去似乎更为一般的游戏:给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移动者判负。事实上,这个游戏可以认为是所有Impartial Combinatorial Games的抽象模型。也就是说,任何一个ICG都可以通过把每个局面看成一个顶点,对每个局面和它的子局面连一条有向边来抽象成这个“有向图游戏”。下面我们就在有向无环图的顶点上定义Sprague-Garundy函数。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。

来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。

以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的定义的那三句话是完全对应的)。我们通过计算有向无环图的每个顶点的SG值,就可以对每种局面找到必胜策略了。但SG函数的用途远没有这样简单。如果将有向图游戏变复杂一点,比如说,有向图上并不是只有一枚棋子,而是有n枚棋子,每次可以任选一颗进行移动,这时,怎样找到必胜策略呢?

让我们再来考虑一下顶点的SG值的意义。当g(x)=k时,表明对于任意一个0<=i<k,都存在x的一个后继y满足g(y)=i。也就是说,当某枚棋子的SG值是k时,我们可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。不知道你能不能根据这个联想到Nim游戏,Nim游戏的规则就是:每次选择一堆数量为k的石子,可以把它变成0、变成1、……、变成k-1,但绝对不能保持k不变。这表明,如果将n枚棋子所在的顶点的SG值看作n堆相应数量的石子,那么这个Nim游戏的每个必胜策略都对应于原来这n枚棋子的必胜策略!

对于n个棋子,设它们对应的顶点的SG值分别为(a1,a2,...,an),再设局面(a1,a2,...,an)时的Nim游戏的一种必胜策略是把ai变成k,那么原游戏的一种必胜策略就是把第i枚棋子移动到一个SG值为k的顶点。这听上去有点过于神奇——怎么绕了一圈又回到Nim游戏上了。

其实我们还是只要证明这种多棋子的有向图游戏的局面是P-position当且仅当所有棋子所在的位置的SG函数的异或为0。这个证明与上节的Bouton's Theorem几乎是完全相同的,只需要适当的改几个名词就行了。

刚才,我为了使问题看上去更容易一些,认为n枚棋子是在一个有向图上移动。但如果不是在一个有向图上,而是每个棋子在一个有向图上,每次可以任选一个棋子(也就是任选一个有向图)进行移动,这样也不会给结论带来任何变化。

所以我们可以定义有向图游戏的和(Sum of Graph Games):设G1、G2、……、Gn是n个有向图游戏,定义游戏G是G1、G2、……、Gn的和(Sum),游戏G的移动规则是:任选一个子游戏Gi并移动上面的棋子。Sprague-Grundy Theorem就是:g(G)=g(G1)^g(G2)^...^g(Gn)。也就是说,游戏的和的SG函数值是它的所有子游戏的SG函数值的异或。

再考虑在本文一开头的一句话:任何一个ICG都可以抽象成一个有向图游戏。所以“SG函数”和“游戏的和”的概念就不是局限于有向图游戏。我们给每个ICG的每个position定义SG值,也可以定义n个ICG的和。所以说当我们面对由n个游戏组合成的一个游戏时,只需对于每个游戏找出求它的每个局面的SG值的方法,就可以把这些SG值全部看成Nim的石子堆,然后依照找Nim的必胜策略的方法来找这个游戏的必胜策略了!

有n堆石子,每次可以从第1堆石子里取1颗、2颗或3颗,可以从第2堆石子里取奇数颗,可以从第3堆及以后石子里取任意颗……我们可以把它看作3个子游戏,第1个子游戏只有一堆石子,每次可以取1、2、3颗,很容易看出x颗石子的局面的SG值是x%4。第2个子游戏也是只有一堆石子,每次可以取奇数颗,经过简单的画图可以知道这个游戏有x颗石子时的SG值是x%2。第3个游戏有n-2堆石子,就是一个Nim游戏。对于原游戏的每个局面,把三个子游戏的SG值异或一下就得到了整个游戏的SG值,然后就可以根据这个SG值判断是否有必胜策略以及做出决策了。其实看作3个子游戏还是保守了些,干脆看作n个子游戏,其中第1、2个子游戏如上所述,第3个及以后的子游戏都是“1堆石子,每次取几颗都可以”,称为“任取石子游戏”,这个超简单的游戏有x颗石子的SG值显然就是x。其实,n堆石子的Nim游戏本身不就是n个“任取石子游戏”的和吗?

>>>>>>>转载请注明出处:寻找&星空の孩子 <<<<<<<

上面的没看明白的,来个简单的消化一下吧:

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走1-f{1}个石子,剩余{0}个,mex{sg[0]}={0},故sg[1]=1;

x=2时,可以取走2-f{1}个石子,剩余{1}个,mex{sg[1]}={1},故sg[2]=0;

x=3时,可以取走3-f{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}={0,0},故sg[3]=1;

x=4时,可以取走4-f{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}={1,1,0},故sg[4]=2;

x=5时,可以取走5-f{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}={2,0,1},故sg[5]=3;

以此类推.....

x
0 1 2 3 4 5 6 7 8....

sg[x] 0 1 0 1 2 3 2 0
1....

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

1.可选步数为1~m的连续整数,直接取模即可,SG(x)
= x % (m+1);

2.可选步数为任意步,SG(x) =
x;

3.可选步数为一系列不连续的数,用GetSG()计算

模板1如下(SG打表):

 //f[]:可以取走的石子个数
//sg[]:0~n的SG函数值
//hash[]:mex{}
int f[N],sg[N],hash[N];
void getSG(int n)
{
int i,j;
memset(sg,,sizeof(sg));
for(i=;i<=n;i++)
{
memset(hash,,sizeof(hash));
for(j=;f[j]<=i;j++)
hash[sg[i-f[j]]]=;
for(j=;j<=n;j++) //求mes{}中未出现的最小的非负整数
{
if(hash[j]==)
{
sg[i]=j;
break;
}
}
}
}

模板2如下(dfs):

 //注意 S数组要按从小到大排序 SG函数要初始化为-1 对于每个集合只需初始化1遍
//n是集合s的大小 S[i]是定义的特殊取法规则的数组
int s[],sg[],n;
int SG_dfs(int x)
{
int i;
if(sg[x]!=-)
return sg[x];
bool vis[];
memset(vis,,sizeof(vis));
for(i=;i<n;i++)
{
if(x>=s[i])
{
SG_dfs(x-s[i]);
vis[sg[x-s[i]]]=;
}
}
int e;
for(i=;;i++)
if(!vis[i])
{
e=i;
break;
}
return sg[x]=e;
}

练习:hdu1848
&& hdu1536

解题报告:>>hdu1848<<
&& >>hdu1536<<

喜欢博弈的同学也欢迎来我开的专题一起做

链接:
>>博弈的诡计<<

博弈之——SG模板的更多相关文章

  1. HDU 1524 树上无环博弈 暴力SG

    一个拓扑结构的图,给定n个棋的位置,每次可以沿边走,不能操作者输. 已经给出了拓扑图了,对于每个棋子找一遍SG最后SG和就行了. /** @Date : 2017-10-13 20:08:45 * @ ...

  2. 博弈的SG函数理解及模板

    首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2,3,5}=0.mex{}=0. 对 ...

  3. 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)

    博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...

  4. Nowcoder 挑战赛23 B 游戏 ( NIM博弈、SG函数打表 )

    题目链接 题意 : 中文题.点链接 分析 : 前置技能是 SG 函数.NIM博弈变形 每次可取石子是约数的情况下.那么就要打出 SG 函数 才可以去通过异或操作判断一个局面的胜负 打 SG 函数的时候 ...

  5. Educational Codeforces Round 68 (Rated for Div. 2) D. 1-2-K Game (博弈, sg函数,规律)

    D. 1-2-K Game time limit per test2 seconds memory limit per test256 megabytes inputstandard input ou ...

  6. 学习笔记--博弈组合-SG函数

    fye学姐的测试唯一的水题.... SG函数是一种游戏图每个节点的评估函数 具体定义为: mex(minimal excludant)是定义在整数集合上的操作.它的自变量是任意整数集合,函数值是不属于 ...

  7. 【UVA1378】A Funny Stone Game (博弈-求SG值-输出方案)

    [题目] Description The funny stone game is coming. There are n piles of stones, numbered with 0, 1, 2, ...

  8. HDU 3970 Paint Chain (博弈,SG函数)

    Paint Chain Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU 3032 Nim or not Nim?(博弈,SG打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. Linux下Oracle表空间及用户创建

    记录详细过程以备使用 Connected to Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 Connected as sys@i ...

  2. JAVA主流框架---SSM整合

      1.通过监听器的形式引入spring 2.SpringMVC容器和Spring容器间的关系 3.汇通的主旨 让大家熟练掌握SSM调用过程.并且将后台调用彻底掌握. 4.传统项目的搭建的弊端 1.传 ...

  3. 常用 ADB 命令[ZZ]

    https://blog.csdn.net/yang_zhang_1992/article/details/71404186 1. 显示当前运行的全部模拟器: adb devices 2. 对某一模拟 ...

  4. 两种经典电商CSS布局

    圣杯布局和双飞翼布局! 两种布局功能相同,都是为了实现两端宽度固定,中间宽度自适应的三栏布局 圣杯布局: 三个区域都处于左浮动状态,并使main的宽度成父容器的100% 为两侧侧边栏添加负margin ...

  5. Git使用详细教程(6):git mv重命名文件

    与使用git rm类似,Git还提供了重命名文件的命令git mv,我们可以通过该命令重命名文件. 如下图,git mv包含了以下动作

  6. nginx配置tp5的pathinfo模式并隐藏后台入口文件

    server { listen 2223; server_name manage; access_log /data/wwwlogs/access_manage.log combined; root ...

  7. 传参导出Excel表乱码问题解决方法

    业务场景 先描述一下业务场景,要实现的功能是通过搜索框填写参数,然后点击按钮搜索数据,将搜索框的查询参数获取,附加在链接后面,调导Excel表接口,然后实现导出Excel功能.其实做导Excel表功能 ...

  8. 二、activiti工作流-创建25张表

    首先我们在eclipse上创建一个maven项目 然后在resources下面创建一个file,并命名问activiti.cfg.xml activiti.cfg.xml的配置内容如下 <?xm ...

  9. win7 Host文件修改后无效的解决办法

    win7 Host文件修改后无效的解决办法 正常情况下hosts文件随时修改随时生效,如果出现修改后不生效的情况,首先确定文件是ascii编码,以windows格式为换行符,然后依次采用如下方法  1 ...

  10. nginx介绍(一) 简介篇

    Nginx(发音为"engine x")是一款由俄罗斯软件工程师Igor Sysoev年发布以来nginx一直关注于高性能.高并发.低内存的使用,另外还有一些特色的Web服务器功能 ...