给定一个无序的整数数组,找到其中最长上升子序列的长度。

示例:

输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4

说明:

  • 可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
  • 你算法的时间复杂度应该为 O(n2) 。

进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?

解法1:动态规划 算法复杂度 O(n^2)

1.建立表 length[n]
2.遍历到nums[i]时,建立循环j in 0-(i-1) 如果nums[j]比nums[i]小,length[i]=max(length[i], length[j]+1) 
3.更新maxLength
注:这里额外设置了一个maxlength,是因为nums[i]可能没有起作用
length[i]不表示截止nums[i]的最长增长子序列长度

class Solution {
public:
    int FindMax(int a, int b){
        return a>b ? a:b;
    }
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        ) ;
        int length[n];
        ;
        length[] = ;
        ;i<n;i++){
            length[i] = ;
            ;j<i;j++){
                if(nums[i] > nums[j]){
                    length[i] = FindMax(length[i], length[j]+);
                }
            }
            max = FindMax(max, length[i]);
        }
        return max;
    }
};

解法2:算法复杂度 O(nlogn)

1. 新建立一个数组new[]存放值
2. 遍历原数组nums[]
3. 将nums[i]放入new[]中:找到第一个大于nums[i]的值并替换,如果不存在就直接放到new[]末尾
4. 最后的长度即为这个数组new的长度,但是!!这个数组的内容并不是真实最长增长子序列

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        vector<int> dp;
        ; i < nums.size(); ++i) {
            , right = dp.size();
            while (left < right) {
                ;
                ;
                else right = mid;
            }
            if (right >= dp.size()) dp.push_back(nums[i]);
            else dp[right] = nums[i];
        }
        return dp.size();
    }
};

最长增长子序列(LIS)的更多相关文章

  1. 一个数组求其最长递增子序列(LIS)

    一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外 ...

  2. 2.16 最长递增子序列 LIS

    [本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就 ...

  3. 最长上升子序列LIS(51nod1134)

    1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递 ...

  4. 动态规划(DP),最长递增子序列(LIS)

    题目链接:http://poj.org/problem?id=2533 解题报告: 状态转移方程: dp[i]表示以a[i]为结尾的LIS长度 状态转移方程: dp[0]=1; dp[i]=max(d ...

  5. 【部分转载】:【lower_bound、upperbound讲解、二分查找、最长上升子序列(LIS)、最长下降子序列模版】

    二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound() ...

  6. 题解 最长上升子序列 LIS

    最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的 ...

  7. 最长回文子序列LCS,最长递增子序列LIS及相互联系

    最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(d ...

  8. 1. 线性DP 300. 最长上升子序列 (LIS)

    最经典单串: 300. 最长上升子序列 (LIS) https://leetcode-cn.com/problems/longest-increasing-subsequence/submission ...

  9. 最长上升子序列(LIS)模板

    最长递增(上升)子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增(上升)子序列. 考虑两个数a[x ...

随机推荐

  1. linux 配置本地光盘YUM源

    1.挂载光盘到 /media下 [root@localhost ~]# mount /dev/cdrom /media 2.直接配置文件了. [root@localhost ~]# cd /etc/y ...

  2. hadoop 开发环境搭建

    一,安装java环境 添加java环境变量 vi /etc/profile   # add by tank export JAVA_HOME=/data/soft/jdk/jdk1.7.0_71 ex ...

  3. 网络编程基础【day10】:进程与线程介绍(一 )

    本节内容 1.概述 2.什么是进程? 3.什么是线程? 4.什么是携程? 5.存在的疑问 6.总结 一.概述 我们知道,所有的指令的操作都是有CPU来负责的,cpu是来负责运算的.OS(操作系统) 调 ...

  4. 完美解决distinct中使用多个字段的方法

    众所周知,distinct可以列出不重复的记录,对于单个字段来说distinct使用比较简单,但是对于多个字段来说,distinct使用起来会使人发狂.而且貌似也没有见到微软对distinct使用多字 ...

  5. Python复习笔记(七)线程和进程

    1. 多任务 并行:真的多任务 并发:假的多任务 2. 多任务-线程 Python的 Thread模块是比较底层的模块,Python的 Threading模块 是对Thread做了一些包装,可以更加方 ...

  6. java 写一个 map reduce 矩阵相乘的案例

    1.写一个工具类用来生成 map reduce 实验 所需 input 文件 下面两个是原始文件 matrix1.txt 1 2 -2 0 3 3 4 -3 -2 0 2 3 5 3 -1 2 -4 ...

  7. VS Resharper正常代码显示红色处理

    点击重启VS即可.

  8. ASP.NET MVC 3 Razor 语法

    1.   三元运算符 1)   输出文本 1.   View var var1 = '@(1 < 2 ? "YES" : "NO")'; var var2 ...

  9. hadoop3.x的安装

    请看https://www.cnblogs.com/garfieldcgf/p/8119506.html

  10. bzoj 2726 任务安排(3)/loj 10184-10186 斜率优化

    任务安排1 #include<bits/stdc++.h> #define int long long using namespace std; ; int n,s,t[N],c[N],f ...