题目链接:codeforces 997C.Sky Full of Stars

一道很简单(?)的推式子题

直接求显然不现实,我们考虑容斥

记\(f(i,j)\)为该方阵中至少有\(i\)行和\(j\)列为相同颜色的情况

那么显然有\(ans=\sum_{i=0}^n \sum_{j=0}^n C_n^i C_n^j (-1)^{i+j-1} f(i,j)\ \ (i+j\neq0)\)

其中对于\(f(i,j)\)的取值有两种情况

​ I.若\(i=0\)或\(j=0\),先假设\(i=0\),那么颜色相同的\(j\)列的颜色可以随意变化,故\(f(i,j)=f(0,j)=3^j*3^{n(n-j)}\)

​ II.若\(i\neq0\ \&\&\ j\neq0\),那么这\(i\)行和\(j\)列的颜色一定是相同的,故\(f(i,j)=3*3^{(n-i)(n-j)}\)

对于I,我们可以在\(O(nlogn)\)的时间内求出结果

对于II,我们可以通过预处理在\(O(n^2)\)的时间内求出结果,但这显然是不可行的,于是我们考虑变形

根据3的幂次我们令\(i=n-i,j=n-j\)

那么原式=\(\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} C^{n-i}_n C^{n-j}_n (-1)^{2n-i-j-1} 3*3^{ij}\)

=\(3\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} C^{i}_n C^{j}_n (-1)^{i+j+1} 3^{ij}\)

这样做的话仍然没有结束,我们考虑将\(i\)提出来

原式=\(3\sum_{i=0}^{n-1} C_n^i (-1)^{i+1} \sum_{j=0}^{n-1} C_n^j (-1)^j 3^{ij}\)

=\(3\sum_{i=0}^{n-1} C_n^i (-1)^{i+1} \sum_{j=0}^{n-1} C_n^j (-3^i)^j\)

由二项式定理知,原式=\(3\sum_{i=0}^{n-1} C_n^i (-1)^{i+1} [(1+(-3^i))^n-(-3^i)^n]\)

这样的话我们也能在\(O(nlogn)\)的时间内求出这个值

总时间复杂度\(O(nlogn)\)

#include<iostream>
#include<string>
#include<string.h>
#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<vector>
#include<queue>
#include<map>
using namespace std;
#define rep(i,a,b) for (i=a;i<=b;i++)
typedef long long ll;
#define maxd 998244353 ll qpow(ll x,ll y)
{
ll ans=1,sum=x;
while (y)
{
int tmp=y%2;y/=2;
if (tmp) ans=(ans*sum)%maxd;
sum=(sum*sum)%maxd;
}
return ans;
} int n;
ll c[1001000],inv[1001000]; int read()
{
int x=0,f=1;char ch=getchar();
while ((ch<'0') || (ch>'9')) {if (ch=='-') f=-1;ch=getchar();}
while ((ch>='0') && (ch<='9')) {x=x*10+(ch-'0');ch=getchar();}
return x*f;
} void init()
{
n=read();int i;
c[0]=1;inv[1]=1;
for (i=2;i<=n;i++) inv[i]=((maxd-maxd/i)*inv[maxd%i])%maxd;
for (i=1;i<=n;i++) c[i]=((c[i-1]*(n-i+1))%maxd*inv[i])%maxd;
//for (i=1;i<=n;i++) cout << c[i] << " ";cout << endl;
} void work()
{
ll ans=0,ans1=0,ans2=0;int i;
for (i=1;i<=n;i++)
{
if (i%2) ans1+=(c[i]*qpow(3,(ll)n*(n-i)+i))%maxd;
else ans1-=(c[i]*qpow(3,(ll)n*(n-i)+i))%maxd;
}
for (i=0;i<n;i++)
{
if (i%2) ans2+=(c[i]*(qpow(1+maxd-qpow(3,i),n)-qpow(maxd-qpow(3,i),n))%maxd)%maxd;
else ans2-=(c[i]*(qpow(1+maxd-qpow(3,i),n)-qpow(maxd-qpow(3,i),n))%maxd)%maxd;
}
ans1=((ans1%maxd)+maxd)%maxd;
ans2=((ans2%maxd)+maxd)%maxd;
ans=(ans1*2+ans2*3)%maxd;
printf("%I64d",ans);
} int main()
{
init();
work();
return 0;
}

codeforces 997C.Sky Full of Stars的更多相关文章

  1. [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)

    [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...

  2. Codeforces.997C.Sky Full of Stars(容斥 计数)

    题目链接 那场完整的Div2(Div1 ABC)在这儿.. \(Description\) 给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或 ...

  3. Codeforces 997 C - Sky Full of Stars

    C - Sky Full of Stars 思路: 容斥原理 题解:http://codeforces.com/blog/entry/60357 注意当i > 1 且 j > 1,是同一种 ...

  4. CF997C Sky Full of Stars

    CF997C Sky Full of Stars 计数好题 在Ta的博客查看 容斥式子:发现只要每个钦定方案的贡献都考虑到再配上容斥系数就是对的 O(n^2)->O(n) 把麻烦的i=0,j=0 ...

  5. 【题解】CF997C Sky Full of Stars

    [题解]CF997C Sky Full of Stars 为什么我的容斥原理入门题是这道题????????? \(Part-1\)正向考虑 直接考虑不合法合法的方案吧 所以我们设行有\(i\),列有\ ...

  6. Codeforces 835C-Star sky

    题目链接:http://codeforces.com/problemset/problem/835/C 题意:天上有很多星星,每个星星有他自己的坐标和初始亮度,然后每个星星的亮度在一秒内会加一如果大于 ...

  7. codeforces997C Sky full of stars

    传送门:http://codeforces.com/problemset/problem/997/C [题解] 注意在把$i=0$或$j=0$分开考虑的时候,3上面的指数应该是$n(n-j)+j$ 至 ...

  8. cf997C. Sky Full of Stars(组合数 容斥)

    题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...

  9. Codeforces997C Sky Full of Stars 【FMT】【组合数】

    题目大意: 一个$n*n$的格子,每个格子由你填色,有三种允许填色的方法,问有一行或者一列相同的方案数. 题目分析: 标题的FMT是我吓人用的. 一行或一列的问题不好解决,转成它的反面,没有一行和一列 ...

随机推荐

  1. XGBoost模型的参数调优

    XGBoost算法在实际运行的过程中,可以通过以下要点进行参数调优: (1)添加正则项: 在模型参数中添加正则项,或加大正则项的惩罚力度,即通过调整加权参数,从而避免模型出现过拟合的情况. (2)控制 ...

  2. bug总结

    1.被除数为0 2.Java 空指针异常(java.lang.NullPointerException) 即对象没有进行实例化便进行了使用.实例化的意义,就是将对象实例的地址赋值给对象符号. 比如 S ...

  3. 访问修饰符 public private protected default

  4. 【学习总结】Master课程 之 虚拟化与云计算

    Section 1- Cloud Computing Introduction-云计算介绍 1-What can Cloud Computing do? - 云计算可以做什么? 服务模式:美国国家标准 ...

  5. bridge br0 docker 网络问题 Docker Container与Docker Host

    Docker学习笔记:Docker 网络配置 - docker ppt - docker中文社区http://www.docker.org.cn/dockerppt/111.html Bridge t ...

  6. 从零开始搭建VUE项目

    前言: 此样板面向大型,严肃的项目,并假定您对Webpack和vue-loader有些熟悉. 请务必阅读vue-loader的常见工作流配方的文档. 如果您只想尝试vue-loader或者鞭打一个快速 ...

  7. JS 获取链接中的参数

    1.获取链接全部参数,以对象的形式返回 //获取url中参数 function GetRequest() { var url = location.search; //获取url中"?&qu ...

  8. sql之cursor的简介和字符串拆分(split)与游标的使用

     字符串拆分(split)与游标的使用 CREATE TABLE Plates ( ,), ) NOT NULL, [BusinessId] INT NOT NULL, ) ),),), SELECT ...

  9. 1363. ZigZag Conversion

    public class Solution { /** * @param s: the given string * @param numRows: the number of rows * @ret ...

  10. day 7-7 线程池与进程池

    一. 进程池与线程池 在刚开始学多进程或多线程时,我们迫不及待地基于多进程或多线程实现并发的套接字通信,然而这种实现方式的致命缺陷是:服务的开启的进程数或线程数都会随着并发的客户端数目地增多而增多,这 ...