显然这是一道dfs简单题

或许匹配也能做

然而用了dancing links

显然这也是一道模板题

好的吧

调了一上午 终于弄好了模板

Easy Finding
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 19052   Accepted: 5273

Description

Given a M×N matrix AAij ∈ {0, 1} (0 ≤ i < M, 0 ≤ j < N), could you find some rows that let every cloumn contains and only contains one 1.

Input

There are multiple cases ended by EOF. Test case up to 500.The first line of input is MN (M ≤ 16, N ≤ 300). The next M lines every line contains N integers separated by space.

Output

For each test case, if you could find it output "Yes, I found it", otherwise output "It is impossible" per line.

Sample Input

3 3
0 1 0
0 0 1
1 0 0
4 4
0 0 0 1
1 0 0 0
1 1 0 1
0 1 0 0

Sample Output

Yes, I found it
It is impossible

Source

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; int S[maxn], head[maxn], vis[maxn];
int U[maxn], D[maxn], L[maxn], R[maxn];
int C[maxn], X[maxn];
int n, m, ans, ret; void init()
{
for(int i = ; i <= m; i++)
D[i] = i, U[i] = i, R[i] = i + , L[i] = i - ;
L[] = m, R[m] = ;
mem(S, ), mem(head, -);
ans = m + ;
} void delc(int c)
{
L[R[c]] = L[c], R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
U[D[j]] = U[j], D[U[j]] = D[j], S[C[j]]--; } void resc(int c)
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
U[D[j]] = j, D[U[j]] = j, S[C[j]]++;
L[R[c]] = c, R[L[c]] = c;
} void add(int r, int c)
{
ans++, S[c]++, C[ans] = c, X[ans] = r;
D[ans] = D[c];
U[ans] = c;
U[D[c]] = ans;
D[c] = ans;
if(head[r] < ) head[r] = L[ans] = R[ans] = ans;
else L[ans] = head[r], R[ans] = R[head[r]],L[R[head[r]]] = ans, R[head[r]] = ans;
} bool dfs(int sh)
{
if(!R[])
{
ret = sh;
return true;
}
int c = R[];
delc(c);
for(int i = D[c]; i != c; i = D[i])
{
vis[sh] = i;
for(int j = R[i]; j != i; j = R[j])
delc(C[j]);
if(dfs(sh + )) return true;
for(int j = L[i]; j != i; j = L[j])
resc(C[j]);
}
resc(c);
return false;
} int main()
{
while(scanf("%d%d", &n, &m) != EOF)
{
init();
int tmp;
for(int i = ; i <= n; i++)
for(int j = ; j <= m; j++)
{
rd(tmp);
if(tmp) add(i, j);
}
if(dfs())
printf("Yes, I found it\n");
else
printf("It is impossible\n"); } return ;
}

Easy Finding POJ - 3740 (DLX)的更多相关文章

  1. Sudoku POJ - 2676(DLX)

    Sudoku Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25356   Accepted: 11849   Specia ...

  2. 舞蹈链(DLX)

    舞蹈链(DLX) Tags:搜索 作业部落 评论地址 一.概述 特别特别感谢这位童鞋His blog 舞蹈链是一种优美的搜索,就像下面这样跳舞- 舞蹈链用于解决精确覆盖或者重复覆盖的问题 你可以想象成 ...

  3. POJ 3076 / ZOJ 3122 Sudoku(DLX)

    Description A Sudoku grid is a 16x16 grid of cells grouped in sixteen 4x4 squares, where some cells ...

  4. POJ_3740 Easy Finding ——精确覆盖问题,DLX模版

    Easy Finding Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18790   Accepted: 5184 Des ...

  5. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  6. POJ题目(转)

    http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj29 ...

  7. NOIP 2009 靶形数独(DLX)

    小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向Z 博士请教,Z 博士拿出了他最近发明的“靶形数独”,作 ...

  8. Repeater POJ - 3768 (分形)

    Repeater POJ - 3768 Harmony is indispensible in our daily life and no one can live without it----may ...

  9. 【转】 Easy RadControl 之 RadGridView(Silverlight)

    1.不显示第1列即列指示器(Row Indicators) 在 telerik:RadGridView中设置属性   RowIndicatorVisibility="Collapsed&qu ...

随机推荐

  1. PySpider框架的基本用法

    pyspider安装: 3.7之后无法正常使用,使用可以下载Python3.6或以下,或者修改pyspider内部代码 ———————————————————————————————————————— ...

  2. C#使用OneNote的图片文字识别功能(OCR)

    http://www.cnblogs.com/Charltsing/p/OneNoteOCR.html 有需要技术咨询的,联系QQ564955427 前段时间有人问我能不能通过OneNote扫描图片, ...

  3. Jenkins部署net core小记

    作为一个不熟悉linux命令的neter,在centos下玩Jenkins真的是一种折磨啊,但是痛并快乐着,最后还是把demo部署成功!写这篇文章是为了记录一下这次部署的流程,和心得体会. 网上很多资 ...

  4. 六、es6 map

    一.map的特点 JavaScript 的对象(Object),本质上是键值对的集合(Hash 结构),但是传统上只能用字符串当作键.这给它的使用带来了很大的限制. 为了解决这个问题,ES6 提供了 ...

  5. 《Effective C++》资源管理:条款13-条款17

    条款13:以对象管理资源 为了防止资源泄漏,请使用RAII(Resource Acquisition Is Initialization)对象,在构造函数里面获得资源,在析构函数里面释放资源 auto ...

  6. Oracle条件判断if...elsif

  7. API知识点总结

    一.开发api接口开放给其他人调用的api接口(短信接口,支付宝api) 二.api安全弱点数据窃取(解决加密),数据篡改(解决MD5),数据泄露(爬虫技术)(解决令牌)1.加密(HTTPS传输-收费 ...

  8. 介绍Ajax与jQuery技术

    Ajxs技术(异步的JavaScript与XML)已有多种技术的组合 Ajax的优点是什么? 1.可以实现客户端的异步请求操作2.进而在不需要刷新页面的情况下与服务器进行通信,减少用户的等待时间3.减 ...

  9. 运行pip报错:Fatal error in launcher: Unable to create process using '"'

    参考: https://blog.csdn.net/cjeric/article/details/73518782

  10. hadoop第一个例子

    Java.io.URL 1.编写java程序 package com.company; import java.io.IOException; import java.io.InputStream; ...