【tensorflow-v2.0】如何将模型转换成tflite模型
前言
TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile)、嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具。之前想部署tensorflow模型,需要转换成tflite模型。
实现过程
1.不同模型的调用函数接口稍微有些不同
# Converting a SavedModel to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert() # Converting a tf.Keras model to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert() # Converting ConcreteFunctions to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
2. 完整的实现
import tensorflow as tf
saved_model_dir = './mobilenet/'
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite.tflite', 'wb').write(tflite_model)
其中,
@classmethod
from_saved_model(
cls,
saved_model_dir,
signature_keys=None,
tags=None
)
另外
For more complex SavedModels, the optional parameters that can be passed into TFLiteConverter.from_saved_model() are input_arrays, input_shapes, output_arrays, tag_set and signature_key. Details of each parameter are available by running help(tf.lite.TFLiteConverter).
对于如何查看模型的操作op,可查看here;
help(tf.lite.TFLiteConverter)结果
Help on class TFLiteConverterV2 in module tensorflow.lite.python.lite: class TFLiteConverterV2(TFLiteConverterBase)
| TFLiteConverterV2(funcs, trackable_obj=None)
|
| Converts a TensorFlow model into TensorFlow Lite model.
|
| Attributes:
| allow_custom_ops: Boolean indicating whether to allow custom operations.
| When false any unknown operation is an error. When true, custom ops are
| created for any op that is unknown. The developer will need to provide
| these to the TensorFlow Lite runtime with a custom resolver.
| (default False)
| target_spec: Experimental flag, subject to change. Specification of target
| device.
| optimizations: Experimental flag, subject to change. A list of optimizations
| to apply when converting the model. E.g. `[Optimize.DEFAULT]
| representative_dataset: A representative dataset that can be used to
| generate input and output samples for the model. The converter can use the
| dataset to evaluate different optimizations.
| experimental_enable_mlir_converter: Experimental flag, subject to change.
| Enables the MLIR converter instead of the TOCO converter.
|
| Example usage:
|
| ```python
| # Converting a SavedModel to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
| tflite_model = converter.convert()
|
| # Converting a tf.Keras model to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_keras_model(model)
| tflite_model = converter.convert()
|
| # Converting ConcreteFunctions to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_concrete_functions([func])
| tflite_model = converter.convert()
| ```
|
| Method resolution order:
| TFLiteConverterV2
| TFLiteConverterBase
| builtins.object
|
| Methods defined here:
|
| __init__(self, funcs, trackable_obj=None)
| Constructor for TFLiteConverter.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
| trackable_obj: tf.AutoTrackable object associated with `funcs`. A
| reference to this object needs to be maintained so that Variables do not
| get garbage collected since functions have a weak reference to
| Variables. This is only required when the tf.AutoTrackable object is not
| maintained by the user (e.g. `from_saved_model`).
|
| convert(self)
| Converts a TensorFlow GraphDef based on instance variables.
|
| Returns:
| The converted data in serialized format.
|
| Raises:
| ValueError:
| Multiple concrete functions are specified.
| Input shape is not specified.
| Invalid quantization parameters.
|
| ----------------------------------------------------------------------
| Class methods defined here:
|
| from_concrete_functions(funcs) from builtins.type
| Creates a TFLiteConverter object from ConcreteFunctions.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid input type.
|
| from_keras_model(model) from builtins.type
| Creates a TFLiteConverter object from a Keras model.
|
| Args:
| model: tf.Keras.Model
|
| Returns:
| TFLiteConverter object.
|
| from_saved_model(saved_model_dir, signature_keys=None, tags=None) from builtins.type
| Creates a TFLiteConverter object from a SavedModel directory.
|
| Args:
| saved_model_dir: SavedModel directory to convert.
| signature_keys: List of keys identifying SignatureDef containing inputs
| and outputs. Elements should not be duplicated. By default the
| `signatures` attribute of the MetaGraphdef is used. (default
| saved_model.signatures)
| tags: Set of tags identifying the MetaGraphDef within the SavedModel to
| analyze. All tags in the tag set must be present. (default set(SERVING))
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid signature keys.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from TFLiteConverterBase:
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
问题:
使用tf_saved_model中生成mobilenet网络模型转换成tfLite能够成功,为什么使用另一个设计的模型进行转换却出现问题了呢??
Traceback (most recent call last):
File "pb2tflite.py", line , in <module>
tflite_model = converter.convert()
File "~/.local/lib/python3.7/site-packages/tensorflow_core/lite/python/lite.py", line , in convert
"invalid shape '{1}'.".format(_get_tensor_name(tensor), shape_list))
ValueError: None is only supported in the 1st dimension. Tensor 'images' has invalid shape '[None, None, None, None]'.
facebox模型节点:
(tf_test) ~/workspace/test_code/github_test/faceboxes-tensorflow$ saved_model_cli show --dir model/detector/ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['images'] tensor_info:
dtype: DT_FLOAT
shape: (-, -, -, -)
name: serving_default_images:
The given SavedModel SignatureDef contains the following output(s):
outputs['boxes'] tensor_info:
dtype: DT_FLOAT
shape: (-, , )
name: StatefulPartitionedCall:
outputs['num_boxes'] tensor_info:
dtype: DT_INT32
shape: (-)
name: StatefulPartitionedCall:
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
mobilenet的模型节点
~/workspace/test_code/github_test/faceboxes-tensorflow/mobilenet$ saved_model_cli show --dir ./ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_1'] tensor_info:
dtype: DT_FLOAT
shape: (-, , , )
name: serving_default_input_1:
The given SavedModel SignatureDef contains the following output(s):
outputs['act_softmax'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
得到大神指点,tflite是静态图,需要指定hwc的值,在此谢过,那么问题来了,怎么指定hwc呢?
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
error
Some of the operators in the model are not supported by the standard TensorFlow Lite runtime. If those are native TensorFlow operators, you might be able to use the extended runtime by passing --enable_select_tf_ops, or by setting target_ops=TFLITE_BUILTINS,SELECT_TF_OPS when calling tf.lite.TFLiteConverter(). Otherwise, if you have a custom implementation for them you can disable this error with --allow_custom_ops, or by setting allow_custom_ops=True when calling tf.lite.TFLiteConverter(). Here is a list of builtin operators you are using: ADD, AVERAGE_POOL_2D, CONCATENATION, CONV_2D, MAXIMUM, MINIMUM, MUL, NEG, PACK, RELU, RESHAPE, SOFTMAX, STRIDED_SLICE, SUB, UNPACK. Here is a list of operators for which you will need custom implementations: TensorListFromTensor, TensorListReserve, TensorListStack, While.
TensorFlow Lite 已经内置了很多运算符,并且还在不断扩展,但是仍然还有一部分 TensorFlow 运算符没有被 TensorFlow Lite 原生支持。这些不被支持的运算符会给 TensorFlow Lite 的模型转换带来一些阻力。
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
还是有点问题。。。
参考
2. stackoverflow_how-to-create-a-tflite-file-from-saved-model-ssd-mobilenet;
3. tfv1-模型文件转换;
5. tf_saved_model;
8. ops_select;
完
【tensorflow-v2.0】如何将模型转换成tflite模型的更多相关文章
- 「新手必看」Python+Opencv实现摄像头调用RGB图像并转换成HSV模型
在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助 ...
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- TensorFlow v2.0实现逻辑斯谛回归
使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和 ...
- 利用反射将Datatable、SqlDataReader转换成List模型
1. DataTable转IList public class DataTableToList<T>whereT :new() { ///<summary> ///利用反射将D ...
- h5模型文件转换成pb模型文件
本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换 ...
- 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...
- 使用TensorFlow v2.0构建多层感知器
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- TensorFlow v2.0实现Word2Vec算法
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...
随机推荐
- wordpress自定义菜单间添加分隔符
我们知道wordpress自定义菜单每个item是用<li></li>来固定的,那如果想在</li>加分隔符要如何操作呢?如下图所示.我们可以用PHP的str_re ...
- 查看服务器被访问最大的ip
网站有时会很卡,可以先看看哪些ip访问最多,一行命令就可以列出来,如下所示 netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c ...
- spark调优——JVM调优
对于JVM调优,首先应该明确,(major)full gc/minor gc,都会导致JVM的工作线程停止工作,即stop the world. JVM调优一:降低cache操作的内存占比 1. ...
- java内部类的本质
连接与通信,作为桥接中间件存在. 内部类和主体类可以无障碍通信: 1.通过继承连接实现: 2.通过接口连接通信: 形式: 1.命名空间: 2.运行上下文: 其它: 信息隐藏是次要功能. 内部类 Jav ...
- Object archiving
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Arch ...
- [转载] miller rabin
本文转载自https://www.cnblogs.com/zsq259/p/11602175.html Miller-Rabin 事先声明,因为菜鸡Hastin知识水平有限就是菜,因此语言可能不是特别 ...
- MongoDB Index
索引通常能够极大的提高查询的效率,如果没有索引,MongoDB在读取数据时必须扫描集合中的每个文件并选取那些符合查询条件的记录. 这种扫描全集合的查询效率是非常低的,特别在处理大量的数据时,查询可以要 ...
- python函数 | 列表生成式
在编写程序或者查看别人的程序时,经常会遇到列表生成式,这个使用起来并不复杂,但是非常有用,使我们的代码更加简洁灵活.很多python使用者并不太会使用它.今天,就给大家详细讲解列表生成式和生成器表达式 ...
- 使用overnightjs typescript 注解开发expressjs 应用
overnightjs 提供了基于注解的expressjs应用开发,包含了比较全的express 开发支持,使用简单,以下是一个简单的试用 项目准备 项目使用pkg 进行了打包处理 初始化 yarn ...
- timeout/timelimit
timelimit