【tensorflow-v2.0】如何将模型转换成tflite模型
前言
TensorFlow Lite 提供了转换 TensorFlow 模型,并在移动端(mobile)、嵌入式(embeded)和物联网(IoT)设备上运行 TensorFlow 模型所需的所有工具。之前想部署tensorflow模型,需要转换成tflite模型。
实现过程
1.不同模型的调用函数接口稍微有些不同
# Converting a SavedModel to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
tflite_model = converter.convert() # Converting a tf.Keras model to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert() # Converting ConcreteFunctions to a TensorFlow Lite model.
converter = lite.TFLiteConverter.from_concrete_functions([func])
tflite_model = converter.convert()
2. 完整的实现
import tensorflow as tf
saved_model_dir = './mobilenet/'
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir)
converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite.tflite', 'wb').write(tflite_model)
其中,
@classmethod
from_saved_model(
cls,
saved_model_dir,
signature_keys=None,
tags=None
)
另外
For more complex SavedModels, the optional parameters that can be passed into TFLiteConverter.from_saved_model() are input_arrays, input_shapes, output_arrays, tag_set and signature_key. Details of each parameter are available by running help(tf.lite.TFLiteConverter).
对于如何查看模型的操作op,可查看here;
help(tf.lite.TFLiteConverter)结果
Help on class TFLiteConverterV2 in module tensorflow.lite.python.lite: class TFLiteConverterV2(TFLiteConverterBase)
| TFLiteConverterV2(funcs, trackable_obj=None)
|
| Converts a TensorFlow model into TensorFlow Lite model.
|
| Attributes:
| allow_custom_ops: Boolean indicating whether to allow custom operations.
| When false any unknown operation is an error. When true, custom ops are
| created for any op that is unknown. The developer will need to provide
| these to the TensorFlow Lite runtime with a custom resolver.
| (default False)
| target_spec: Experimental flag, subject to change. Specification of target
| device.
| optimizations: Experimental flag, subject to change. A list of optimizations
| to apply when converting the model. E.g. `[Optimize.DEFAULT]
| representative_dataset: A representative dataset that can be used to
| generate input and output samples for the model. The converter can use the
| dataset to evaluate different optimizations.
| experimental_enable_mlir_converter: Experimental flag, subject to change.
| Enables the MLIR converter instead of the TOCO converter.
|
| Example usage:
|
| ```python
| # Converting a SavedModel to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_saved_model(saved_model_dir)
| tflite_model = converter.convert()
|
| # Converting a tf.Keras model to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_keras_model(model)
| tflite_model = converter.convert()
|
| # Converting ConcreteFunctions to a TensorFlow Lite model.
| converter = lite.TFLiteConverter.from_concrete_functions([func])
| tflite_model = converter.convert()
| ```
|
| Method resolution order:
| TFLiteConverterV2
| TFLiteConverterBase
| builtins.object
|
| Methods defined here:
|
| __init__(self, funcs, trackable_obj=None)
| Constructor for TFLiteConverter.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
| trackable_obj: tf.AutoTrackable object associated with `funcs`. A
| reference to this object needs to be maintained so that Variables do not
| get garbage collected since functions have a weak reference to
| Variables. This is only required when the tf.AutoTrackable object is not
| maintained by the user (e.g. `from_saved_model`).
|
| convert(self)
| Converts a TensorFlow GraphDef based on instance variables.
|
| Returns:
| The converted data in serialized format.
|
| Raises:
| ValueError:
| Multiple concrete functions are specified.
| Input shape is not specified.
| Invalid quantization parameters.
|
| ----------------------------------------------------------------------
| Class methods defined here:
|
| from_concrete_functions(funcs) from builtins.type
| Creates a TFLiteConverter object from ConcreteFunctions.
|
| Args:
| funcs: List of TensorFlow ConcreteFunctions. The list should not contain
| duplicate elements.
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid input type.
|
| from_keras_model(model) from builtins.type
| Creates a TFLiteConverter object from a Keras model.
|
| Args:
| model: tf.Keras.Model
|
| Returns:
| TFLiteConverter object.
|
| from_saved_model(saved_model_dir, signature_keys=None, tags=None) from builtins.type
| Creates a TFLiteConverter object from a SavedModel directory.
|
| Args:
| saved_model_dir: SavedModel directory to convert.
| signature_keys: List of keys identifying SignatureDef containing inputs
| and outputs. Elements should not be duplicated. By default the
| `signatures` attribute of the MetaGraphdef is used. (default
| saved_model.signatures)
| tags: Set of tags identifying the MetaGraphDef within the SavedModel to
| analyze. All tags in the tag set must be present. (default set(SERVING))
|
| Returns:
| TFLiteConverter object.
|
| Raises:
| Invalid signature keys.
|
| ----------------------------------------------------------------------
| Data descriptors inherited from TFLiteConverterBase:
| __dict__
| dictionary for instance variables (if defined)
|
| __weakref__
| list of weak references to the object (if defined)
问题:
使用tf_saved_model中生成mobilenet网络模型转换成tfLite能够成功,为什么使用另一个设计的模型进行转换却出现问题了呢??
Traceback (most recent call last):
File "pb2tflite.py", line , in <module>
tflite_model = converter.convert()
File "~/.local/lib/python3.7/site-packages/tensorflow_core/lite/python/lite.py", line , in convert
"invalid shape '{1}'.".format(_get_tensor_name(tensor), shape_list))
ValueError: None is only supported in the 1st dimension. Tensor 'images' has invalid shape '[None, None, None, None]'.
facebox模型节点:
(tf_test) ~/workspace/test_code/github_test/faceboxes-tensorflow$ saved_model_cli show --dir model/detector/ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['images'] tensor_info:
dtype: DT_FLOAT
shape: (-, -, -, -)
name: serving_default_images:
The given SavedModel SignatureDef contains the following output(s):
outputs['boxes'] tensor_info:
dtype: DT_FLOAT
shape: (-, , )
name: StatefulPartitionedCall:
outputs['num_boxes'] tensor_info:
dtype: DT_INT32
shape: (-)
name: StatefulPartitionedCall:
outputs['scores'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
mobilenet的模型节点
~/workspace/test_code/github_test/faceboxes-tensorflow/mobilenet$ saved_model_cli show --dir ./ --all MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs: signature_def['__saved_model_init_op']:
The given SavedModel SignatureDef contains the following input(s):
The given SavedModel SignatureDef contains the following output(s):
outputs['__saved_model_init_op'] tensor_info:
dtype: DT_INVALID
shape: unknown_rank
name: NoOp
Method name is: signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['input_1'] tensor_info:
dtype: DT_FLOAT
shape: (-, , , )
name: serving_default_input_1:
The given SavedModel SignatureDef contains the following output(s):
outputs['act_softmax'] tensor_info:
dtype: DT_FLOAT
shape: (-, )
name: StatefulPartitionedCall:
Method name is: tensorflow/serving/predict
得到大神指点,tflite是静态图,需要指定hwc的值,在此谢过,那么问题来了,怎么指定hwc呢?
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
error
Some of the operators in the model are not supported by the standard TensorFlow Lite runtime. If those are native TensorFlow operators, you might be able to use the extended runtime by passing --enable_select_tf_ops, or by setting target_ops=TFLITE_BUILTINS,SELECT_TF_OPS when calling tf.lite.TFLiteConverter(). Otherwise, if you have a custom implementation for them you can disable this error with --allow_custom_ops, or by setting allow_custom_ops=True when calling tf.lite.TFLiteConverter(). Here is a list of builtin operators you are using: ADD, AVERAGE_POOL_2D, CONCATENATION, CONV_2D, MAXIMUM, MINIMUM, MUL, NEG, PACK, RELU, RESHAPE, SOFTMAX, STRIDED_SLICE, SUB, UNPACK. Here is a list of operators for which you will need custom implementations: TensorListFromTensor, TensorListReserve, TensorListStack, While.
TensorFlow Lite 已经内置了很多运算符,并且还在不断扩展,但是仍然还有一部分 TensorFlow 运算符没有被 TensorFlow Lite 原生支持。这些不被支持的运算符会给 TensorFlow Lite 的模型转换带来一些阻力。
import tensorflow as tf
saved_model_dir = './model/detector/'
model = tf.saved_model.load(saved_model_dir)
concrete_func = model.signatures[tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY]
concrete_func.inputs[0].set_shape([1, 512, 512, 3])
converter = tf.lite.TFLiteConverter.from_concrete_functions([concrete_func])
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
# converter.experimental_new_converter = True
tflite_model = converter.convert()
open('model_tflite_facebox.tflite', 'wb').write(tflite_model)
还是有点问题。。。
参考
2. stackoverflow_how-to-create-a-tflite-file-from-saved-model-ssd-mobilenet;
3. tfv1-模型文件转换;
5. tf_saved_model;
8. ops_select;
完
【tensorflow-v2.0】如何将模型转换成tflite模型的更多相关文章
- 「新手必看」Python+Opencv实现摄像头调用RGB图像并转换成HSV模型
在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助 ...
- 三分钟快速上手TensorFlow 2.0 (中)——常用模块和模型的部署
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 前文:三分钟快速上手TensorFlow 2.0 (上)——前置基础.模型建立与可视化 tf.train. ...
- TensorFlow v2.0实现逻辑斯谛回归
使用TensorFlow v2.0实现逻辑斯谛回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 MNIST数据集概览 此示例使用MNIST手写数字.该数据集包含60,000个用于训练的样本和 ...
- 利用反射将Datatable、SqlDataReader转换成List模型
1. DataTable转IList public class DataTableToList<T>whereT :new() { ///<summary> ///利用反射将D ...
- h5模型文件转换成pb模型文件
本文主要记录Keras训练得到的.h5模型文件转换成TensorFlow的.pb文件 #*-coding:utf-8-* """ 将keras的.h5的模型文件,转换 ...
- 三分钟快速上手TensorFlow 2.0 (上)——前置基础、模型建立与可视化
本文学习笔记参照来源:https://tf.wiki/zh/basic/basic.html 学习笔记类似提纲,具体细节参照上文链接 一些前置的基础 随机数 tf.random uniform(sha ...
- 使用TensorFlow v2.0构建多层感知器
使用TensorFlow v2.0构建一个两层隐藏层完全连接的神经网络(多层感知器). 这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制. 神经网络概述 MNIST 数据集概述 此 ...
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- TensorFlow v2.0实现Word2Vec算法
使用TensorFlow v2.0实现Word2Vec算法计算单词的向量表示,这个例子是使用一小部分维基百科文章来训练的. 更多信息请查看论文: Mikolov, Tomas et al. " ...
随机推荐
- LGOJP3193 [HNOI2008]GT考试
\(f[i][j]\)表示当前摆放到第\(i\)位,然后当前的匹配长度为\(j\) \(f[i][j]=\sum {f[i][k]*g[k][j]}\) \(g[i][j]\)表示将长度为\(i\)的 ...
- hdu2068-RPG的错排-(dp递推式)
去年看错排公式,死都看不懂,基础扎实之后再来看就略懂了. 公式: dp[ n ] = ( n-1 ) * ( dp[n-1] + dp[n-2] ) 解析公式:比如有n个元素,各对应n个正确位置,dp ...
- 第六次作业--static关键字、对象
##题目一 ##Computer package Train.Method.TeachDemo.Thread.Fuction; /** * 求n的阶乘算法 * @author 喵 * @date 20 ...
- UFUN 函数 UF_UI UF_DISP函数( UF_UI_select_with_class_dialog 、UF_DISP_set_highlight)
//设置class_dialog选择过滤 static int init_proc(UF_UI_selection_p_t select,void* user_data) { //过滤类别的个数 ; ...
- blockstack与Ethereum
https://github.com/blockstack https://bihu.com/article/1260288 blockstack是用户登录的认证中心,类似java中的OAuth2进行 ...
- MySQL 8.0.18 InnoDB Cluster 主从(MGR)完整安装配置
提示: MySQL InnoDB Cluster底层依赖Group Replication模式,至少3台机器 1. 准备3台 CentOS Linux 7 (Core), 修改各主机名:db-hos ...
- LCA的多种求法(超详细!!!)
倍增求LCA (1)树上倍增法 预处理 设f[x,k]表示x的2^k辈祖先,即从x向根节点走2^k步到达的节点.特别地,若该节点不存在,则令f[x,k]=0.f[x,0]就是x的父节点.可以得出f[x ...
- 你向 Mysql 数据库插入 100w 条数据用了多久?
阅读本文大概需要 2 分钟. ▌目录 多线程插入(单表) 多线程插入(多表) 预处理 SQL 多值插入 SQL 事务( N 条提交一次) ▌多线程插入(单表) 问:为何对同一个表的插入多线程会比单线程 ...
- [Gamma阶段]第三次Scrum Meeting
Scrum Meeting博客目录 [Gamma阶段]第三次Scrum Meeting 基本信息 名称 时间 地点 时长 第三次Scrum Meeting 19/05/29 大运村寝室6楼 30min ...
- save tracking results into csv file for oxuva long-term tracking dataset (from txt to csv)
save tracking results into csv file for oxuva long-term tracking dataset (from txt to csv) 2019-10-2 ...