Design a data structure that supports all following operations in average O(1) time.

Note: Duplicate elements are allowed.

  1. insert(val): Inserts an item val to the collection.
  2. remove(val): Removes an item val from the collection if present.
  3. getRandom: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.

Example:

// Init an empty collection.
RandomizedCollection collection = new RandomizedCollection(); // Inserts 1 to the collection. Returns true as the collection did not contain 1.
collection.insert(1); // Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1].
collection.insert(1); // Inserts 2 to the collection, returns true. Collection now contains [1,1,2].
collection.insert(2); // getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3.
collection.getRandom(); // Removes 1 from the collection, returns true. Collection now contains [1,2].
collection.remove(1); // getRandom should return 1 and 2 both equally likely.
collection.getRandom();

380. Insert Delete GetRandom O(1)的拓展,这题是可以有重复数字。只需将上一题目的解法稍作改动,依然使用哈希表+数组,这次哈希表中的值是保存数组下标的一个Set。

Java:

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Random;
import java.util.TreeSet; public class RandomizedCollection { private HashMap<Integer, TreeSet<Integer>> dataMap;
private ArrayList<Integer> dataList;
/** Initialize your data structure here. */
public RandomizedCollection() {
dataMap = new HashMap<Integer, TreeSet<Integer>>();
dataList = new ArrayList<Integer>();
} /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
public boolean insert(int val) {
TreeSet<Integer> idxSet = dataMap.get(val);
if (idxSet == null) {
idxSet = new TreeSet<Integer>();
dataMap.put(val, idxSet);
}
idxSet.add(dataList.size());
dataList.add(val);
return idxSet.size() == 1;
} /** Removes a value from the collection. Returns true if the collection contained the specified element. */
public boolean remove(int val) {
TreeSet<Integer> idxSet = dataMap.get(val);
if (idxSet == null || idxSet.isEmpty()) {
return false;
}
int idx = idxSet.pollLast(); //Last index of val
int tail = dataList.get(dataList.size() - 1); //Tail of list
TreeSet<Integer> tailIdxSet = dataMap.get(tail);
if (tail != val) {
tailIdxSet.pollLast(); //Remove last idx of list tail
tailIdxSet.add(idx); //Add idx to tail idx set
dataList.set(idx, tail);
}
dataList.remove(dataList.size() - 1);
return true;
} /** Get a random element from the collection. */
public int getRandom() {
return dataList.get(new Random().nextInt(dataList.size()));
}
}

Python:

from random import randint
from collections import defaultdict class RandomizedCollection(object): def __init__(self):
"""
Initialize your data structure here.
"""
self.__list = []
self.__used = defaultdict(list) def insert(self, val):
"""
Inserts a value to the collection. Returns true if the collection did not already contain the specified element.
:type val: int
:rtype: bool
"""
has = val in self.__used self.__list += val,
self.__used[val] += len(self.__list)-1, return not has def remove(self, val):
"""
Removes a value from the collection. Returns true if the collection contained the specified element.
:type val: int
:rtype: bool
"""
if val not in self.__used:
return False self.__used[self.__list[-1]][-1] = self.__used[val][-1]
self.__list[self.__used[val][-1]], self.__list[-1] = self.__list[-1], self.__list[self.__used[val][-1]] self.__used[val].pop()
if not self.__used[val]:
self.__used.pop(val)
self.__list.pop() return True def getRandom(self):
"""
Get a random element from the collection.
:rtype: int
"""
return self.__list[randint(0, len(self.__list)-1)]

C++:

class RandomizedCollection {
public:
/** Initialize your data structure here. */
RandomizedCollection() {} /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */
bool insert(int val) {
m[val].insert(nums.size());
nums.push_back(val);
return m[val].size() == 1;
} /** Removes a value from the collection. Returns true if the collection contained the specified element. */
bool remove(int val) {
if (m[val].empty()) return false;
int idx = *m[val].begin();
m[val].erase(idx);
if (nums.size() - 1 != idx) {
int t = nums.back();
nums[idx] = t;
m[t].erase(nums.size() - 1);
m[t].insert(idx);
}
nums.pop_back();
return true;
} /** Get a random element from the collection. */
int getRandom() {
return nums[rand() % nums.size()];
} private:
vector<int> nums;
unordered_map<int, unordered_set<int>> m;
};

  

类似题目:

[LeetCode] 380. Insert Delete GetRandom O(1) 插入删除获得随机数O(1)时间

All LeetCode Questions List 题目汇总

[LeetCode] 381. Insert Delete GetRandom O(1) - Duplicates allowed 插入删除和获得随机数O(1)时间 - 允许重复的更多相关文章

  1. [LeetCode] 380. Insert Delete GetRandom O(1) 常数时间内插入删除和获得随机数

    Design a data structure that supports all following operations in average O(1) time. insert(val): In ...

  2. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed O(1) 时间插入、删除和获取随机元素 - 允许重复(C++/Java)

    题目: Design a data structure that supports all following operations in averageO(1) time. Note: Duplic ...

  3. [LeetCode] 381. Insert Delete GetRandom O(1) - Duplicates allowed 常数时间内插入删除和获得随机数 - 允许重复

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  4. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed

    原题链接在这里:https://leetcode.com/problems/insert-delete-getrandom-o1-duplicates-allowed/?tab=Description ...

  5. LeetCode 381. Insert Delete GetRandom O(1) - Duplicates allowed (插入删除和获得随机数 常数时间 允许重复项)

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  6. [leetcode]381. Insert Delete GetRandom O(1) - Duplicates allowed常数时间插入删除取随机值

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  7. leetcode 380. Insert Delete GetRandom O(1) 、381. Insert Delete GetRandom O(1) - Duplicates allowed

    380. Insert Delete GetRandom O(1) 实现插入.删除.获得随机数功能,且时间复杂度都在O(1).实际上在插入.删除两个功能中都包含了查找功能,当然查找也必须是O(1). ...

  8. 381. Insert Delete GetRandom O(1) - Duplicates allowed

    Design a data structure that supports all following operations in average O(1) time. Note: Duplicate ...

  9. [LeetCode] Insert Delete GetRandom O(1) 常数时间内插入删除和获得随机数

    Design a data structure that supports all following operations in average O(1) time. insert(val): In ...

随机推荐

  1. CentOS7安装Postman

    1. 进入官网:https://www.getpostman.com/downloads/2. 点击下载3. 直接安装:tar zxvf ***.tar.gz4. 确认当前目录: pwd /home/ ...

  2. python的tkinter,能画什么图?

    今天从下午忙到现在,睡觉. 这个能绘点图的. import json import tkinter as tk from tkinter import filedialog from tkinter ...

  3. Redis.Memcache和MongoDB区别?

    Memcached的优势: Memcached可以利用多核优势,单吞吐量极高,可以达到几十万QPS(取决于Key.value的字节大小以及服务器硬件性能,日常环境中QPS高峰大约在4-6w左右.)适用 ...

  4. Docker 部署 vue 项目

    Docker 部署 vue 项目 Docker 作为轻量级虚拟化技术,拥有持续集成.版本控制.可移植性.隔离性和安全性等优势.本文使用Docker来部署一个vue的前端应用,并尽可能详尽的介绍了实现思 ...

  5. Linux——安装并配置Kafka

    前言 Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写.Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动 ...

  6. SparkSQL读写外部数据源--csv文件的读写

    object CSVFileTest { def main(args: Array[String]): Unit = { val spark = SparkSession .builder() .ap ...

  7. 性能:Receiver层面

    创建多个接收器 多个端口启动多个receiver在其他Executor,接收多个端口数据,在吞吐量上提高其性能.代码上: import org.apache.spark.storage.Storage ...

  8. fiddler抓取手机https请求详解

    前言: Fiddler是在 windows下常用的网络封包截取工具,在做移动开发时,我们为了调试与服务器端的网络通讯协议,常常需要截取网络封包来分析,fiddler默认只能抓取http请求,需要配置和 ...

  9. zabbix显示 get value from agent failed:cannot connetct to xxxx:10050:[4] interrupted system call

    在阿里云上部署的两台云主机,从server上 agent.ping不通agent10050端口,在agent上使用firewalld-cmd 添加了10050端口还不行,关闭了防火墙和selinux也 ...

  10. 洛谷 P3385 【模板】负环 题解

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T ...