测度(Measure)
测度概述
数学上,测度(Measure)是一个函数,它对一个给定集合的某些子集指定一个数,这个数可以比作大小、体积、概率等等。传统的积分是在区间上进行的,后来人们希望把积分推广到任意的集合上,就发展出测度的概念,它在数学分析和概率论有重要的地位。
测度论是实分析的一个分支,研究对象有σ代数、测度、可测函数和积分,其重要性在概率论和统计学中有所体现的。
测度的定义
形式上说,一个测度(详细的说法是可列可加的正测度)是个函数。设是集合上的一个σ代数,在上定义,于扩充区间中取值,并且满足以下性质:
- 空集的测度为零:
-
- 。
- 可数可加性,或称σ可加性:若为中可数个两两不交的集合的序列,则所有的并集的测度,等于每个的测度之总和:
-
- 。
这样的三元组称为一个测度空间,而中的元素称为这个空间中的可测集。
测度的性质
下面的一些性质可从测度的定义导出:
单调性
测度的单调性:
若和为可测集,而且,则 。
可数个可测集的并集的测度
若 为可测集(不必是两两不交的),并且对于所有的,⊆,则集合的并集是可测的,且有如下不等式(「次可列可加性」):
以及如下极限:
可数个可测集的交集的测度
若 为可测集,并且对于所有的,⊆,则的交集是可测的。进一步说,如果至少一个的测度有限,则有极限:
如若不假设至少一个的测度有限,则上述性质一般不成立。例如对于每一个,令
这里,全部集合都具有无限测度,但它们的交集是空集。
σ有限测度
如果是一个有限实数(而不是),则测度空间称为有限测度空间。如果可以表示为可数个可测集的并集,而且这些可测集的测度均有限,则该测度空间称为σ有限测度空间。称测度空间中的一个集合具有σ有限测度,如果可以表示为可数个可测集的并集,而且这些可测集的测度均有限。
作为例子,实数集赋以标准勒贝格测度是σ有限的,但不是有限的。为说明之,只要考虑闭区间族[k, k+1],k 取遍所有的整数;这样的区间共有可数多个,每一个的测度为1,而且并起来就是整个实数集。作为另一个例子,取实数集上的计数测度,即对实数集的每个有限子集,都把元素个数作为它的测度,至于无限子集的测度则令为。这样的测度空间就不是σ有限的,因为任何有限测度集只含有有限个点,从而,覆盖整个实数轴需要不可数个有限测度集。σ有限的测度空间有些很好的性质;从这点上说,σ有限性可以类比于拓扑空间的可分性。
完备性
一个可测集称为零测集,如果。零测集的子集称为可去集,它未必是可测的,但零测集自然是可去集。如果所有的可去集都可测,则称该测度为完备测度。
一个测度可以按如下的方式延拓为完备测度:考虑的所有这样的子集,它与某个可测集仅差一个可去集,也就是说与的对称差包含于一个零测集中。由这些子集生成的σ代数,并定义的值就等于。
例子
下列是一些测度的例子(重要性与顺序无关)。
- 计数测度 定义为的‘元素个数’。
- 一维勒贝格测度 是定义在的一个含所有区间的σ代数上的、完备的、平移不变的、满足的唯一测度。
- Circular angle 测度 是旋转不变的。
- 局部紧拓扑群上的哈尔测度是勒贝格测度的一种推广,而且也有类似的刻划。
- 恆零测度 定义为,对任意的。
- 每一个概率空间都有一个测度,它对全空间取值为1(于是其值全部落到单位区间[0,1]中)。这就是所谓概率测度。
- 其它例子,包括:狄拉克测度、波莱尔测度、若尔当测度、遍历测度、欧拉测度、高斯测度、贝尔测度、拉东测度。
测度(Measure)的更多相关文章
- [实变函数]3.1 外测度 (outer measure)
1 并不是所有的集合都可求测度. 我们的想法是先对 $\bbR^n$ 中的任一集合定义一个``外 测度'' (outer measure), 然后再加上适当的条件 (Caratheodory 条件), ...
- 深度学习-Wasserstein GAN论文理解笔记
GAN存在问题 训练困难,G和D多次尝试没有稳定性,Loss无法知道能否优化,生成样本单一,改进方案靠暴力尝试 WGAN GAN的Loss函数选择不合适,使模型容易面临梯度消失,梯度不稳定,优化目标不 ...
- 测度论--长度是怎样炼成的[zz]
http://www.58pic.com/newpic/27882296.html http://www.58pic.com/newpic/27893137.html http://699pic.co ...
- An Introduction to Measure Theory and Probability
目录 Chapter 1 Measure spaces Chapter 2 Integration Chapter 3 Spaces of integrable functions Chapter 4 ...
- Android measure过程分析
作为一名Android开发人员,我们都知道一个View从无到有,会经历3个阶段: 1. measure/测量阶段,也就是确定某个view大小的过程: 2. layout/布局阶段,也就是确定其左上右下 ...
- \(\S1 \) Gaussian Measure and Hermite Polynomials
Define on \(\mathbb{R}^d\) the normalized Gaussian measure\[ d \gamma(x)=\frac{1}{(2\pi)^{\frac{d}{2 ...
- 通过Measure & Arrange实现UWP瀑布流布局
简介 在以XAML为主的控件布局体系中,有用于完成布局的核心步骤,分别是measure和arrange.继承体系中由UIElement类提供Measure和Arrange方法,并由其子类Framewo ...
- 普通View的measure流程
对于普通的view,其测量在ViewGroup中的measureChildWithMargins函数中调用child view的measure开始测量. 1:从measure函数开始 public f ...
- [CareerCup] 16.2 Measure Time in a Context Switch 测量上下文转换的时间
16.2 How would you measure the time spent in a context switch? 上下文转换发生在两个进程之间,比如让一个等待进程进入执行和让一个运行进程进 ...
随机推荐
- docker swarm和compose 的使用(阿里)
基本的docker使用参考:Docker 入门 到部署Web 程序- (阿里面试常用的docker命令和优点) 昨天去阿里面试 问我如果给你5台服务器 如何部署docker,我说一个个拷贝,面试官听了 ...
- Net core学习系列(七)——Net Core中间件
一.什么是中间件(Middleware)? 中间件是组装到应用程序管道中以处理请求和响应的软件. 每个组件: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下一个组件之前和之后执行工作. ...
- 彻底搞懂BERT
https://www.cnblogs.com/rucwxb/p/10277217.html
- 基于cesium的GIS洪水淹没三维模拟系统
简介: “FloodFreeth3D”是一款对Mike11软件计算的洪水演进结果使用cesium进行淹没演进三维模拟的软件产品. 技术参数: 1. B/S架构,支持多Web浏览器(ie.chrom ...
- 韦东山视频第3课第2节_JNI_C调用JAVA_P【学习笔记】
C调JAVA方法主要步骤如下: 一.C代码调用java的静态方法 Hello.java public class Hello{ public static void main(String args[ ...
- unzip解压失败( cannot find zipfile directory)
本文链接:https://blog.csdn.net/yori_chen/article/details/80493383[root@localhost soft]# unzip QY.zip Arc ...
- epool与select有什么区别
select在一个进程中打开的最大fd是有限制的,由FD_SETSIZE设置,默认值是2048.不过 epoll则没有这个限制,它所支持的fd上限是最大可以打开文件的数目,这个数字一般远大于2048, ...
- 配置IDEA项目JDK环境
打开IDEA,然后点击[Configure]->[Project Defaults]->[Project Structure],如下图: 然后左侧点击树形菜单的[Project Sett ...
- Default Activity Not Found解决方法
2018年04月07日 17:22:44 Luckily_Liu 阅读数 13573更多 分类专栏: android 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上 ...
- spring boot允许跨域(CORS)的配置
添加@Configuration配置类即可. @Configuration public class WebMvcConfig extends WebMvcConfigurationSupport { ...