深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)
目录
一维Full卷积
一维Same卷积
一维Valid卷积
三种卷积类型的关系
具备深度的一维卷积
具备深度的张量与多个卷积核的卷积
参考资料
一维卷积通常有三种类型:full卷积、same卷积和valid卷积,下面以一个长度为5的一维张量I和长度为3的一维张量K(卷积核)为例,介绍这三种卷积的计算过程
一维Full卷积 |
Full卷积的计算过程是:K沿着I顺序移动,每移动到一个固定位置,对应位置的值相乘再求和,计算过程如下:
将得到的值依次存入一维张量Cfull,该张量就是I和卷积核K的full卷积结果,其中K卷积核或者滤波器或者卷积掩码,卷积符号用符号★表示,记Cfull=I★K
一维Same卷积 |
卷积核K都有一个锚点,然后将锚点顺序移动到张量I的每一个位置处,对应位置相乘再求和,计算过程如下:
假设卷积核的长度为FL,如果FL为奇数,锚点位置在(FL-1)/2处;如果FL为偶数,锚点位置在(FL-2)/2处。
一维Valid卷积 |
从full卷积的计算过程可知,如果K靠近I,就会有部分延伸到I之外,valid卷积只考虑I能完全覆盖K的情况,即K在I的内部移动的情况,计算过程如下:
三种卷积类型的关系 |
具备深度的一维卷积 |
比如x是一个长度为3,深度为3的张量,其same卷积过程如下,卷积核K的锚点在张量x范围内依次移动,输入张量的深度和卷积核的深度是相等的。
具备深度的张量与多个卷积核的卷积 |
上面介绍了一个张量和一个卷积核进行卷积。他们的深度相等才能进行卷积,下面介绍一个张量与多个卷积核的卷积。同一个张量与多个卷积核的卷积本质上是该张量分别与每一个卷积核卷积,然后将每一个卷积结果在深度方向上连接起来。
举例:以长度为3、深度为3的输入张量与2个长度为2、深度为3的卷积核卷积为例,过程如下:
参考资料 |
《图解深度学习与神经网络:从张量到TensorFlow实现》_张平
深度学习面试题09:一维卷积(Full卷积、Same卷积、Valid卷积、带深度的一维卷积)的更多相关文章
- 深度学习面试题27:非对称卷积(Asymmetric Convolutions)
目录 产生背景 举例 参考资料 产生背景 之前在深度学习面试题16:小卷积核级联卷积VS大卷积核卷积中介绍过小卷积核的三个优势: ①整合了三个非线性激活层,代替单一非线性激活层,增加了判别能力. ②减 ...
- 深度学习面试题29:GoogLeNet(Inception V3)
目录 使用非对称卷积分解大filters 重新设计pooling层 辅助构造器 使用标签平滑 参考资料 在<深度学习面试题20:GoogLeNet(Inception V1)>和<深 ...
- 深度学习面试题13:AlexNet(1000类图像分类)
目录 网络结构 两大创新点 参考资料 第一个典型的CNN是LeNet5网络结构,但是第一个引起大家注意的网络却是AlexNet,Alex Krizhevsky其实是Hinton的学生,这个团队领导者是 ...
- 深度学习面试题10:二维卷积(Full卷积、Same卷积、Valid卷积、带深度的二维卷积)
目录 二维Full卷积 二维Same卷积 二维Valid卷积 三种卷积类型的关系 具备深度的二维卷积 具备深度的张量与多个卷积核的卷积 参考资料 二维卷积的原理和一维卷积类似,也有full卷积.sam ...
- 深度学习面试题25:分离卷积(separable卷积)
目录 举例 单个张量与多个卷积核的分离卷积 参考资料 举例 分离卷积就是先在深度上分别卷积,然后再进行卷积,对应代码为: import tensorflow as tf # [batch, in_he ...
- 深度学习面试题24:在每个深度上分别卷积(depthwise卷积)
目录 举例 单个张量与多个卷积核在深度上分别卷积 参考资料 举例 如下张量x和卷积核K进行depthwise_conv2d卷积 结果为: depthwise_conv2d和conv2d的不同之处在于c ...
- 深度学习面试题16:小卷积核级联卷积VS大卷积核卷积
目录 感受野 多个小卷积核连续卷积和单个大卷积核卷积的作用相同 小卷积核的优势 参考资料 感受野 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(fe ...
- 深度学习面试题26:GoogLeNet(Inception V2)
目录 第一层卷积换为分离卷积 一些层的卷积核的个数发生了变化 多个小卷积核代替大卷积核 一些最大值池化换为了平均值池化 完整代码 参考资料 第一层卷积换为分离卷积 net = slim.separab ...
- 深度学习面试题21:批量归一化(Batch Normalization,BN)
目录 BN的由来 BN的作用 BN的操作阶段 BN的操作流程 BN可以防止梯度消失吗 为什么归一化后还要放缩和平移 BN在GoogLeNet中的应用 参考资料 BN的由来 BN是由Google于201 ...
随机推荐
- BIN文件合并烧写
可以实现将Bootloader和Application合并烧写 使用UBIN.exe工具或者J-Flash工具 UBIN工具 选择Bootloader源文件 添加Bootloader源文件 选择App ...
- h3c 802.11协议的发展进程
- vi / vim 字符替换详解
:s/idoxu/isTester.com/g 替换当前行所有 idoxu 为 isTester.com :n,$s/idoxu/isTester.com/ #替换第 n 行开始到最后一行中每一行的第 ...
- CentOS7.5安装python-pip报Error: Nothing to do解决方法
python中的一个十分好用的包管理工具python-pip是我们使用python必不可少的一件工具.但是在CentOS7安装时候却报Error: Nothing to do: [root@bnsf- ...
- Linux系统下文件压缩与打包命令
Linux系统下文件压缩与打包命令 常用的压缩文件拓展名 * .Z * .zip * .gz * .bz2 * .xz * .tar * .tar.gz * .tar.bz2 * .tar.xz 压缩 ...
- SQL EXPLAIN优化详解
使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是 如何处理你的SQL语句的.分析你的查询语句或是表结构的性能瓶颈.使用方式:Explain+SQL语句执行计划包含的信息: ...
- Kotlin扩展深入解析及注意事项和可见性
可见性[Visibility]: 在Java中的可见性有public.protected.private.default四种,而在Kotlin中也有四种:public.protected.privat ...
- 51nod 2497 数三角形
小b有一个仅包含非负整数的数组a,她想知道有多少个三元组(i,j,k),满足i<j<k且a[i],a[j],a[k]可能作为某个三角形的三条边的边长. 收起 输入 第一行输入一个正整数 ...
- 题解 洛谷P4779 【【模板】单源最短路径(标准版)】
正权图,貌似看来是一道裸的 \(dijkstra\) \(dijkstra\)的主要步骤: 首先,在\(dijkstra\)中,源点表示一开始的出发点,蓝点表示还未确定的点,白点则表示已经确定的点. ...
- Java编译器的优化
public class Notice { public static void main(String[] args) { // 右侧20是一个int类型,但没有超过左侧数值范围,就是正确的 // ...