原题链接在这里:https://leetcode.com/problems/friends-of-appropriate-ages/

题目:

Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ith person.

Person A will NOT friend request person B (B != A) if any of the following conditions are true:

  • age[B] <= 0.5 * age[A] + 7
  • age[B] > age[A]
  • age[B] > 100 && age[A] < 100

Otherwise, A will friend request B.

Note that if A requests B, B does not necessarily request A.  Also, people will not friend request themselves.

How many total friend requests are made?

Example 1:

Input: [16,16]
Output: 2
Explanation: 2 people friend request each other.

Example 2:

Input: [16,17,18]
Output: 2
Explanation: Friend requests are made 17 -> 16, 18 -> 17.

Example 3:

Input: [20,30,100,110,120]
Output:
Explanation: Friend requests are made 110 -> 100, 120 -> 110, 120 -> 100.

Notes:

  • 1 <= ages.length <= 20000.
  • 1 <= ages[i] <= 120.

题解:

Accumlate the frequency of different ages.

If age a and age b could send request, and a != b, then res += a freq * b freq.

If a == b, since no one could send friend request to themselves, the request is a freq * (a freq - 1). Send friend request to other people with same age.

Time Complexity: O(n^2). n = ages.length.

Space: O(n).

AC Java:

 class Solution {
public int numFriendRequests(int[] ages) {
if(ages == null || ages.length == 0){
return 0;
} HashMap<Integer, Integer> hm = new HashMap<>();
for(int age : ages){
hm.put(age, hm.getOrDefault(age, 0) + 1);
} int res = 0;
for(int a : hm.keySet()){
for(int b : hm.keySet()){
if(couldSendRequest(a, b)){
res += hm.get(a) * (hm.get(b) - (a == b ? 1 : 0));
}
}
} return res;
} private boolean couldSendRequest(int a, int b){
return !(b <= a*0.5 + 7 || b > a || (b > 100 && a < 100));
}
}

With 3 conditions, we only care the count of B in range (a/2+7, a].

Get the sum count of b and * a count - a count since people can't sent friend request to themselves.

Since A > B >= 0.5*A+7, A > 0.5*A+7. Then A>14. Thus i is started from 15.

Time Complexity: O(n).

Space: O(1).

AC Java:

 class Solution {
public int numFriendRequests(int[] ages) {
if(ages == null || ages.length == 0){
return 0;
} int [] count = new int[121];
for(int age : ages){
count[age]++;
} int [] sum = new int[121];
for(int i = 1; i<121; i++){
sum[i] = sum[i-1] + count[i];
} int res = 0;
for(int i = 15; i<121; i++){
if(count[i] == 0){
continue;
} int bCount = sum[i] - sum[i/2+7];
res += bCount * count[i] - count[i];
} return res;
}
}

LeetCode 825. Friends Of Appropriate Ages的更多相关文章

  1. 【LeetCode】825. Friends Of Appropriate Ages 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/friends-o ...

  2. Java实现 LeetCode 825 适龄的朋友(暴力)

    825. 适龄的朋友 人们会互相发送好友请求,现在给定一个包含有他们年龄的数组,ages[i] 表示第 i 个人的年龄. 当满足以下条件时,A 不能给 B(A.B不为同一人)发送好友请求: age[B ...

  3. 825. Friends Of Appropriate Ages有效的好友请求的数量

    [抄题]: Some people will make friend requests. The list of their ages is given and ages[i] is the age ...

  4. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  5. [LeetCode] Friends Of Appropriate Ages 适合年龄段的朋友

    Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ...

  6. Leetcode题解 - 部分中等难度算法题解(56、957、825、781、1324、816)

    957. N 天后的牢房 思路: 模拟变换,当N天结合后返回 => 当N非常大的时候,超时 => 一般N很大的时候,这种题目必然存在循环,所以记录找过的状态,一旦出现已经访问过的状态可立即 ...

  7. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  8. [Swift]LeetCode825. 适龄的朋友 | Friends Of Appropriate Ages

    Some people will make friend requests. The list of their ages is given and ages[i] is the age of the ...

  9. 【Leetcode周赛】从contest-81开始。(一般是10个contest写一篇文章)

    Contest 81 (2018年11月8日,周四,凌晨) 链接:https://leetcode.com/contest/weekly-contest-81 比赛情况记录:结果:3/4, ranki ...

随机推荐

  1. Vertica性能分析

    Vertica的特点简单的说可以总结为:列存储.MPP架构.技术比较新.列存储本身带来了数据高度压缩的便利,MPP架构使得可以用相对廉价的PC级服务器横向扩展到较大规模(PB级),05年才问世使得它在 ...

  2. logback&log4j异步日志配置

    logback 原始配置 配置 appender, 控制文件的滚动方式,日志的输出格式. <appender name="method-time-appender" clas ...

  3. 转 A 、B两张表,找出ID字段中,存在A表,但是不存在B表的数据

    A.B两张表,找出ID字段中,存在A表,但是不存在B表的数据,A表总共13W数据,去重后大约3万条数据,B表有2W条数据,且B表的ID有索引. 方法一 使用not in,容易理解,效率低. selec ...

  4. 关于DataTable内部索引已损坏的问题 System.Data.RBTree

    1.错误提示: 最近,Winform程序在极其偶然的情况下会遇到如下错误提示 Framework 版本: v4.0.30319 说明: 由于未经处理的异常,进程终止. 异常信息: System.Inv ...

  5. 路径规划基础A*算法

    1,Dijkstra’s  算法 一种发散性寻找最短路径算法. 由起点开始向四周开始发散,直到碰到目标点为止.这时就是最短路径.优点:能找到与目标点的最短路径:缺点:搜索花费的时间会比较长. 2,Gr ...

  6. Oracle性能调优之物化视图用法简介

    目录 一.物化视图简介 二.实践:创建物化视图 一.物化视图简介 物化视图分类 物化视图分类,物化视图语法和as后面的sql分为: (1) 基于主键的物化视图(主键物化视图) (2)基于Rowid的物 ...

  7. 召唤神龙Ladon强化Cobalt Strike

    Ladon5.5 20191109 wiki update 20191114 前言 Ladon 5.5支持Cobalt Strike,内置39个功能模块 加载脚本K8Ladon.cna,通过Ladon ...

  8. Obloq模块:基于ESP8266的物联网模块

    OBLOQ 物联网模块 OBLOQ模块是DFRobot公司开发的一款基于ESP8266芯片的物联网通信模块.模块使用串口(TTL UART)和Arduino(或者其他单片机)通信,支持MQTT,HTT ...

  9. BCryptPasswordEncoder 判断密码是否相同

    加密 BCryptPasswordEncoder encode = new BCryptPasswordEncoder(); encode.encode(password); 比较 matches(C ...

  10. TortoiseSVN客户端更改新的URL和账号

    一: 变更SVN地址 右键(TortoiseSVN) → Relocate → 输入你新的URL地址 二:变更账号 TortoiseSVN右键->Setting 进入“Setting”之后,也就 ...