From:http://rogerioferis.com/VisualRecognitionAndSearch2014/Resources.html

Source Code

Non-exhaustive list of state-of-the-art implementations related to visual recognition and search. There is no warranty for the source code links below – use them at your own risk!

Feature Detection and Description

General Libraries:

  • VLFeat – Implementation of various feature descriptors (including SIFT, HOG, and LBP) and covariant feature detectors (including DoG, Hessian, Harris Laplace, Hessian Laplace, Multiscale Hessian, Multiscale Harris). Easy-to-use Matlab interface. SeeModern features: Software – Slides providing a demonstration of VLFeat and also links to other software. Check also VLFeat hands-on session training
  • OpenCV – Various implementations of modern feature detectors and descriptors (SIFT, SURF, FAST, BRIEF, ORB, FREAK, etc.)

Fast Keypoint Detectors for Real-time Applications:

  • FAST – High-speed corner detector implementation for a wide variety of platforms
  • AGAST – Even faster than the FAST corner detector. A multi-scale version of this method is used for the BRISK descriptor (ECCV 2010).

Binary Descriptors for Real-Time Applications:

  • BRIEF – C++ code for a fast and accurate interest point descriptor (not invariant to rotations and scale) (ECCV 2010)
  • ORB – OpenCV implementation of the Oriented-Brief (ORB) descriptor (invariant to rotations, but not scale)
  • BRISK – Efficient Binary descriptor invariant to rotations and scale. It includes a Matlab mex interface. (ICCV 2011)
  • FREAK – Faster than BRISK (invariant to rotations and scale) (CVPR 2012)

SIFT and SURF Implementations:

Other Local Feature Detectors and Descriptors:

  • VGG Affine Covariant features – Oxford code for various affine covariant feature detectors and descriptors.
  • LIOP descriptor – Source code for the Local Intensity order Pattern (LIOP) descriptor (ICCV 2011).
  • Local Symmetry Features – Source code for matching of local symmetry features under large variations in lighting, age, and rendering style (CVPR 2012).

Global Image Descriptors:

  • GIST – Matlab code for the GIST descriptor
  • CENTRIST – Global visual descriptor for scene categorization and object detection (PAMI 2011)

Feature Coding and Pooling

  • VGG Feature Encoding Toolkit – Source code for various state-of-the-art feature encoding methods – including Standard hard encoding, Kernel codebook encoding, Locality-constrained linear encoding, and Fisher kernel encoding.
  • Spatial Pyramid Matching – Source code for feature pooling based on spatial pyramid matching (widely used for image classification)

Convolutional Nets and Deep Learning

  • Caffe – Fast C++ implementation of deep convolutional networks (GPU / CPU / ImageNet 2013 demonstration).
  • OverFeat – C++ library for integrated classification and localization of objects.
  • EBLearn – C++ Library for Energy-Based Learning. It includes several demos and step-by-step instructions to train classifiers based on convolutional neural networks.
  • Torch7 – Provides a matlab-like environment for state-of-the-art machine learning algorithms, including a fast implementation of convolutional neural networks.
  • Deep Learning - Various links for deep learning software.

Facial Feature Detection and Tracking

  • IntraFace – Very accurate detection and tracking of facial features (C++/Matlab API).

Part-Based Models

Attributes and Semantic Features

Large-Scale Learning

  • Additive Kernels – Source code for fast additive kernel SVM classifiers (PAMI 2013).
  • LIBLINEAR – Library for large-scale linear SVM classification.
  • VLFeat – Implementation for Pegasos SVM and Homogeneous Kernel map.

Fast Indexing and Image Retrieval

  • FLANN – Library for performing fast approximate nearest neighbor.
  • Kernelized LSH – Source code for Kernelized Locality-Sensitive Hashing (ICCV 2009).
  • ITQ Binary codes – Code for generation of small binary codes using Iterative Quantization and other baselines such as Locality-Sensitive-Hashing (CVPR 2011).
  • INRIA Image Retrieval – Efficient code for state-of-the-art large-scale image retrieval (CVPR 2011).

Object Detection

3D Recognition

Action Recognition


Datasets

Attributes

  • Animals with Attributes – 30,475 images of 50 animals classes with 6 pre-extracted feature representations for each image.
  • aYahoo and aPascal – Attribute annotations for images collected from Yahoo and Pascal VOC 2008.
  • FaceTracer – 15,000 faces annotated with 10 attributes and fiducial points.
  • PubFig – 58,797 face images of 200 people with 73 attribute classifier outputs.
  • LFW – 13,233 face images of 5,749 people with 73 attribute classifier outputs.
  • Human Attributes – 8,000 people with annotated attributes. Check also this link for another dataset of human attributes.
  • SUN Attribute Database – Large-scale scene attribute database with a taxonomy of 102 attributes.
  • ImageNet Attributes – Variety of attribute labels for the ImageNet dataset.
  • Relative attributes – Data for OSR and a subset of PubFig datasets. Check also this link for the WhittleSearch data.
  • Attribute Discovery Dataset – Images of shopping categories associated with textual descriptions.

Fine-grained Visual Categorization

Face Detection

  • FDDB – UMass face detection dataset and benchmark (5,000+ faces)
  • CMU/MIT – Classical face detection dataset.

Face Recognition

  • Face Recognition Homepage – Large collection of face recognition datasets.
  • LFW – UMass unconstrained face recognition dataset (13,000+ face images).
  • NIST Face Homepage – includes face recognition grand challenge (FRGC), vendor tests (FRVT) and others.
  • CMU Multi-PIE – contains more than 750,000 images of 337 people, with 15 different views and 19 lighting conditions.
  • FERET – Classical face recognition dataset.
  • Deng Cai’s face dataset in Matlab Format – Easy to use if you want play with simple face datasets including Yale, ORL, PIE, and Extended Yale B.
  • SCFace – Low-resolution face dataset captured from surveillance cameras.

Handwritten Digits

  • MNIST – large dataset containing a training set of 60,000 examples, and a test set of 10,000 examples.

Pedestrian Detection

Generic Object Recognition

  • ImageNet – Currently the largest visual recognition dataset in terms of number of categories and images.
  • Tiny Images – 80 million 32x32 low resolution images.
  • Pascal VOC – One of the most influential visual recognition datasets.
  • Caltech 101 / Caltech 256 – Popular image datasets containing 101 and 256 object categories, respectively.
  • MIT LabelMe – Online annotation tool for building computer vision databases.

Scene Recognition

Feature Detection and Description

  • VGG Affine Dataset – Widely used dataset for measuring performance of feature detection and description. CheckVLBenchmarksfor an evaluation framework.

Action Recognition

RGBD Recognition


Related Courses

code and dataset resources of computer vision的更多相关文章

  1. Computer Vision Resources

    Computer Vision Resources Softwares Topic Resources References Feature Extraction SIFT [1] [Demo pro ...

  2. paper 156:专家主页汇总-计算机视觉-computer vision

    持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...

  3. [转载]Three Trending Computer Vision Research Areas, 从CVPR看接下来几年的CV的发展趋势

    As I walked through the large poster-filled hall at CVPR 2013, I asked myself, “Quo vadis Computer V ...

  4. Analyzing The Papers Behind Facebook's Computer Vision Approach

    Analyzing The Papers Behind Facebook's Computer Vision Approach Introduction You know that company c ...

  5. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

  6. 关于《master opencv with practical computer vision projects》的源代码

    很多读者都在向我要<master opencv with practical computer vision projects>的源代码,现向读者公布,具体源代码地址如下: https:/ ...

  7. Computer Vision Tutorials from Conferences (3) -- CVPR

    CVPR 2013 (http://www.pamitc.org/cvpr13/tutorials.php) Foundations of Spatial SpectroscopyJames Cogg ...

  8. My Reading List - Machine Learning && Computer Vision

    本博客汇总了个人在学习过程中所看过的一些论文.代码.资料以及常用的资源与网站,为了便于记录自身的学习过程,将其整理于博客之中. Machine Learning (1) Machine Learnin ...

  9. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

随机推荐

  1. ora-28000:the account is locked,Oracle修改密码有效期,Oracle设置密码不过期

    查询Oracle用户是否被锁定 --例如我这里是VMCXEDDB 是否被锁定 select username,account_status,lock_date from dba_users where ...

  2. 两个int类型的数据相加,有可能会出现超出int的表示范围。

    两个int类型的数据相加,有可能会出现超出int的表示范围. /* 移位运算符: <<(左移) 规律:一个操作数进行左移运算的时候,结果就是等于操作数乘以2的n次方,n就是左移 的位数. ...

  3. 页面截取字段和转码,页面截取字段时候需要进入JS

    截取字段    ${fn:substring(info.cpflmc,0,20)}${fn:length(info.cpflmc)>40?'...':''}             表头list ...

  4. git图形化统计工具 - windows下gitstats的安装和使用

    gitstats 是一款git历史统计工具,可以生成定量的统计数据,并以html图表的形式展示.统计文件包括文件数量.代码量.提交量.作者信息.每天活跃度.每周活跃度.每月活跃度以及提交数排名等等,信 ...

  5. IDEA中新建子模块

    在IDEA中新建子模块简单步骤: 找到父模块 ->new Module ,然后: next之后,输入ArtifactId: next之后,再输入子模块名,其中,要注意,在contentRoot和 ...

  6. python编译exe后在windows2003上报错

    最近使用python写了一个分析nmon结果的小程序,用的是python3.8.win7环境,pyinstaller生成exe后,在win7上运行一切正常.拿到内网分享给团队成员,在windows20 ...

  7. 信息论 | information theory | 信息度量 | information measures | R代码(一)

    这个时代已经是多学科相互渗透的时代,纯粹的传统学科在没落,新兴的交叉学科在不断兴起. life science neurosciences statistics computer science in ...

  8. php 判断图片文件的真实类型

    /** * * 检测文件的真实类型 * * @param string $srcPath 文件路径 * * @return string $realType 文件真实类型 * */ $imgurl = ...

  9. numpy linspace

    https://www.cnblogs.com/antflow/p/7220798.html numpy.linspace(start, stop, num=50, endpoint=True, re ...

  10. Docs-.NET-C#-指南-语言参考-关键字-值类型-:浮点数值类型

    ylbtech-Docs-.NET-C#-指南-语言参考-关键字-值类型-:浮点数值类型 1.返回顶部 1. 浮点数值类型(C# 引用) 2019/10/22 “浮点类型”是“简单类型”的子集,可以使 ...