2019年牛客多校第一场 E题 ABBA DP
题目链接
思路
首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论。
\(dp[i][j]\)表示放了\(i\)个\('A'\)和\(j\)个\('B'\)的方案数,然后考虑转移到下一个状态:
- 如果\(i\leq n\),那么\('A'\)可以随意放;
- 如果\(j\leq m\),那么\('B'\)可以随意放;
- 如果\(i> n\),那么要放\('A'\)需要放了\('A'\)后多余的\('A'\)前面要有\('B'\)和它匹配,也就是说\(n-i-1\leq j\);
- 如果\(j>m\),那么要放\('B'\)需要放了\('B'\)后多余的\('B'\)前面有\('A'\)和它匹配,也就是说\(n-j-1\leq i\)。
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int n, m;
LL dp[2007][2007];
int main() {
while(~scanf("%d%d", &n, &m)) {
for(int i = 0; i <= n + m; ++i) {
for(int j = 0; j <= n + m; ++j) {
dp[i][j] = 0;
}
}
dp[0][0] = 1;
for(int i = 0; i <= n + m; ++i) {
for(int j = 0; j <= n + m; ++j) {
if(i < n + j) dp[i+1][j] = (dp[i+1][j] + dp[i][j]) % mod;
if(j < m + i) dp[i][j+1] = (dp[i][j+1] + dp[i][j]) % mod;
}
}
printf("%lld\n", dp[n+m][n+m]);
}
return 0;
}
2019年牛客多校第一场 E题 ABBA DP的更多相关文章
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 2019年牛客多校第一场 I题Points Division 线段树+DP
题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...
- 2019年牛客多校第一场 H题XOR 线性基
题目链接 传送门 题意 求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和. 思路 对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献. 首先我们将所有数的线性基的基底\(b\ ...
- 2019年牛客多校第一场 B题 Integration 数学
题目链接 传送门 思路 首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消: \[ \begin ...
- 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学
题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...
- Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)
题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...
- 2019年牛客多校第二场 F题Partition problem 爆搜
题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...
- MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)
题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...
- Kth Minimum Clique(2019年牛客多校第二场D题+k小团+bitset)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 找第\(k\)小团. 思路 用\(bitset\)来标记每个结点与哪些结点直接有边,然后进行\(bfs\),在判断新加入的点与现在有的点是否都 ...
随机推荐
- 神器之strace
原链接:https://www.jianshu.com/p/33521124bdf2来
- python数据分析3之标签化
- sync 简单实现 父子组件的双向绑定
这里主要是对vue文档中的sync进行一个再解释: 如果自己尝试的话,最好在已经使用emit 和prop实现了双向绑定的组件中尝试,以免出现不必要的错误: <!DOCTYPE html> ...
- 用PowerDesigner将SQL转pdm文件
1.打开新建的pdm文件,File->Reverse Enginner->Databases 2.选择对应数据库(DBMS),点击确定,然后添加SQL文件 3.点击确定 注:如果DBMS没 ...
- docker安装指定版本nexus3
安装maven私服 1 下载指定版本的镜像 docker pull sonatype/nexus3:3.18.1 2 宿主机创建一个映射目录 ,并设置所有者 mkdir -p /app/ne ...
- elasticsearch 常见查询及聚合的JAVA API
ES 常见查询 (1)根据ID 进行单个查询 GetResponse response = client.prepareGet("accounts", "person&q ...
- status 和 typedef
- 深度学习-强化学习(RL)概述笔记
强化学习(Reinforcement Learning)简介 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予 ...
- Java程序员必了解的JVM原理以及虚拟机的运行过程
JVM概念 虚拟机:指以软件的方式模拟具有完整硬件,VM概念 虚拟机:指以软件的方式模拟具有完整硬件系统功能.运行在一个完全隔离环境中的完整计算机系统 ,是物理机的软件实现.常用的虚拟机有VMWare ...
- .net Dapper 实践系列(1) ---项目搭建(Layui+Ajax+Dapper+MySQL)
目录 写在前面 一.前期准备 1.在MySQL创建数据库 2.创建项目 3.安装程序包 4.添加插件 5.添加DbOption文件夹 6.添加实体类 写在前面 学习并实践使用Dapper 这个小型的O ...