Halum

Time Limit: 3000ms
Memory Limit: 131072KB

This problem will be judged on UVA. Original ID: 11478
64-bit integer IO format: %lld      Java class name: Main

You are given a directed graph G(V,E) with a set of vertices and edges. Each edge (i,j) that connects some vertex i to vertex j has an integer cost associated with that edge.

Define the operation Halum(v, d) to operate on a vertex v using an integer d as follows: subtract d from the cost of all edges that enter v and add d to the cost of every edge that leaves v.

As an example of that operation, consider graph G that has three vertices named (1, 2, 3) and two edges. Edge (1, 2) has cost -1, and edge (2,3) has cost 1. The operation Halum(2,-3) operates on edges entering and leaving vertex 2. Thus, edge (1, 2) gets cost -1-(-3)=2 and the edge (2, 3) gets cost 1 + (-3) = -2.

Your goal is to apply the Halum function to a graph, potentially repeatedly, until every edge in the graph has at least a certain cost that is greater than zero. You have to maximize this cost.

Input

Two space-separated integers per case: V(V≤500) and E(E≤2700). E lines follow. Each line represents a directed edge using three space-separated integers (u, v, d). Absolute value of cost can be at most 10000.

Output

If the problem is solvable, then print the maximum possible value. If there is no such solution print “No Solution”. If the value can be arbitrary large print “Infinite”

Sample Input

2 1
1 2 10
2 1
1 2 -10
3 3
1 2 4
2 3 2
3 1 5
4 5
2 3 4
4 2 5
3 4 2
3 1 0
1 2 -1

Sample Output

Infinite
Infinite
3
1

解题:差分约束

 #include <cstdio>
#include <deque>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn = ;
struct arc {
int to,w,next;
arc(int x = ,int y = ,int z = -) {
to = x;
w = y;
next = z;
}
} e[];
int head[maxn],tot,n,m;
void add(int u,int v,int w) {
e[tot] = arc(v,w,head[u]);
head[u] = tot++;
}
int d[maxn],cnt[maxn];
bool in[maxn];
bool spfa(int x) {
deque<int>q;
for(int i = ; i <= n; ++i) {
cnt[i] = ;
d[i] = ;
in[i] = true;
q.push_back(i);
}
while(!q.empty()) {
int u = q.front();
q.pop_front();
in[u] = false;
for(int i = head[u]; ~i; i = e[i].next) {
int tmp = e[i].w - x;
if(d[e[i].to] > d[u] + tmp) {
d[e[i].to] = d[u] + tmp;
if(!in[e[i].to]) {
if(++cnt[e[i].to] > n) return false;
in[e[i].to] = true;
if(!q.empty() && d[q.front()] > d[e[i].to])
q.push_front(e[i].to);
else q.push_back(e[i].to);
}
}
}
}
return true;
}
int main() {
int u,v,w;
while(~scanf("%d%d",&n,&m)) {
memset(head,-,sizeof head);
int low = ,high = ;
for(int i = tot = ; i < m; ++i) {
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
high = max(high,w);
}
if(!spfa()) puts("No Solution");
else if(spfa(high+)) puts("Infinite");
else {
int ret;
while(low <= high) {
int mid = (low + high)>>;
if(spfa(mid)) {
ret = mid;
low = mid+;
} else high = mid - ;
}
printf("%d\n",ret);
}
}
return ;
}

UVA 11478 Halum的更多相关文章

  1. UVA - 11478 - Halum(二分+差分约束系统)

    Problem  UVA - 11478 - Halum Time Limit: 3000 mSec Problem Description You are given a directed grap ...

  2. UVA 11478 Halum (差分约束)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. Uva 11478 Halum操作

    题目链接:http://vjudge.net/contest/143318#problem/B 题意:给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权 ...

  4. UVA - 11478 Halum 二分+差分约束

    题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 题意: 给定一个有向图,每一条边都有一个权值,每次你可以 ...

  5. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  6. UVA 11478 Halum(差分约束)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34651 [思路] 差分约束系统. 设结点u上的操作和为sum[u] ...

  7. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  8. 【Halum操作-UVA 11478】

    ·英文题,述大意:      输入有向图一个(什么边的端点啊,边权啊).每次可以选择一个节点和一个整数,然后把这个结点的出边边权加上该整数,入边边权减去该整数,目标:使得所有边的最小值非负且尽量大. ...

  9. Halum UVA - 11478(差分约束 + 二分最小值最大化)

    题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的边的权值增加d,最后要让所有边权的最小值非负且尽量大 两个特判 1 ...

随机推荐

  1. Centos如何安装 jdk 环境变量

    一.编辑 profile 文件 vim /etc/profile 二.在 profile 文件下面最下面加上以下内容 export JAVA_HOME=/usr/local/java/jdk1.7.0 ...

  2. 简述Web Service通讯技术的搭建流程

    Web Service 基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级 ...

  3. SQL优化-标量子查询(数据仓库设计的隐患-标量子查询)

    项目数据库集群出现了大规模节点宕机问题.经查询,问题在于几张表被锁.主要问题在于近期得几个项目在数据库SQL编写时大量使用了标量子查询. 为确定为题确实是由于数据表访问量超过单节点限制,做了一些测试. ...

  4. POJ 1944

    明天补上... 这道题的思路确实很精致.考虑到连的边肯定不会是一个环,所以至少有一个断点.于是,可以枚举这个断点.断点一确定,那么连边的走向也就确定了.用D[i]表示由i开始可以到达的最远点即可.对于 ...

  5. Advanced Fruits HDU杭电1503【LCS的保存】

    Problem Description The company "21st Century Fruits" has specialized in creating new sort ...

  6. Android应用之——自己定义控件ToggleButton

    我们经常会看到非常多优秀的app上面都有一些非常美丽的控件,用户体验非常好.比方togglebutton就是一个非常好的样例,IOS系统以下那个精致的togglebutton现在在android以下也 ...

  7. linux系统oracle服务自启动

    终于知道为什么自启动脚本一直无法成功执行,原来都是空格不对惹的祸.具体步骤说明如下: 1.修改dbstart和dbshut脚本 dbstart脚本默认值启动oracle服务,不启动监听服务,如果想在启 ...

  8. 【POJ 2352】 Stars

    [题目链接] http://poj.org/problem?id=2352 [算法] 树状数组 注意x坐标为0的情况 [代码] #include <algorithm> #include ...

  9. php如何判断两个时间戳是一天

    $date1 = getdate(strtotime('2013-12-31')); $date11 = getdate(strtotime('2014-01-01')); $date2 = getd ...

  10. CSDN日报20170527 ——《人机大战,历史的见证》

    在网络层,互联网提供所有应用程序都要使用的两种类型的服务,尽管目前理解这些服务的细节并不重要,但在所有TCP/IP概述中,都不能忽略他们: 无连接分组交付服务(Connectionless Packe ...