CF 567C(Geometric Progression-map)
1 second
256 megabytes
standard input
standard output
Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer k and
a sequence a, consisting of n integers.
He wants to know how many subsequences of length three can be selected from a, so that they form a geometric progression with common
ratio k.
A subsequence of length three is a combination of three such indexes i1, i2, i3,
that 1 ≤ i1 < i2 < i3 ≤ n.
That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.
A geometric progression with common ratio k is a sequence of numbers of the form b·k0, b·k1, ..., b·kr - 1.
Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.
The first line of the input contains two integers, n and k (1 ≤ n, k ≤ 2·105),
showing how many numbers Polycarp's sequence has and his favorite number.
The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109)
— elements of the sequence.
Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio k.
5 2
1 1 2 2 4
4
3 1
1 1 1
1
10 3
1 2 6 2 3 6 9 18 3 9
6
In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.
用map分别找a/k,a*k
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
#include<map>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Forpiter(x) for(int &p=iter[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (1000000)
typedef long long ll;
ll mul(ll a,ll b){return (a*b)%F;}
ll add(ll a,ll b){return (a+b)%F;}
ll sub(ll a,ll b){return (a-b+(a-b)/F*F+F)%F;}
void upd(ll &a,ll b){a=(a%F+b%F)%F;}
int n,k;
int a[MAXN];
bool b[MAXN]={0};
int l[MAXN]={0};
int cnt[40],cnt2[40];
ll f[MAXN]={0},f2[MAXN]={0};
map<ll,int> S;
map<ll,int>::iterator it;
int main()
{
// freopen("C.in","r",stdin);
// freopen(".out","w",stdout); scanf("%d%d",&n,&k);
For(i,n)
{
scanf("%d",&a[i]);
// while (a[i]%k==0) l[i]++,a[i]/=k;
} For(i,n)
{
if (a[i]%k==0&&S.find(a[i]/k)!=S.end()) f[i]=S[a[i]/k]; it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; }
S.clear(); ForD(i,n)
{
if (S.find((ll)(a[i])*k)!=S.end()) f2[i]=S[((ll)(a[i])*k)];
it=S.find(a[i]);
if (it==S.end()) S[a[i]]=1;
else S[a[i]]++; } ll ans=0;
For(i,n) ans+=f[i]*f2[i];
cout<<ans<<endl; return 0;
}
CF 567C(Geometric Progression-map)的更多相关文章
- CodeForces 567C. Geometric Progression(map 数学啊)
题目链接:http://codeforces.com/problemset/problem/567/C C. Geometric Progression time limit per test 1 s ...
- CF 567C Geometric Progression
题目大意:输入两个整数 n 和 k ,接下来输入n个整数组成的序列.求该序列中三个数 满足条件的子串个数(要求字串由三个整数a,b,c组成,其中 c = k * b = k * k * a). 思路: ...
- Codeforces 567C - Geometric Progression - [map维护]
题目链接:https://codeforces.com/problemset/problem/567/C 题意: 给出长度为 $n$ 的序列 $a[1:n]$,给出公比 $k$,要求你个给出该序列中, ...
- CodeForces 567C Geometric Progression
Geometric Progression Time Limit:1000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I ...
- Codeforces Round #Pi (Div. 2) C. Geometric Progression map
C. Geometric Progression Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/5 ...
- Codeforces 567C Geometric Progression(思路)
题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...
- CodeForces 567C Geometric Progression 类似dp的递推统计方案数
input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...
- map Codeforces Round #Pi (Div. 2) C. Geometric Progression
题目传送门 /* 题意:问选出3个数成等比数列有多少种选法 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 */ /***************** ...
- Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
随机推荐
- Android scrollTo() scrollBy() Scroller解说及应用
版本号:1.0 日期:2014.6.17 2014.6.18 版权:© 2014 kince 转载注明出处 scrollTo() .scrollBy()及 Scroller在视图滑动中常常使用 ...
- 【UML】UML世界的构成
UML概述 全名:Unified Modeling Language 中文名:统一建模语言 发展历程:"始于1997年一个OMG标准.它是一个支持模型化和软件系统开发的图形化语言,为软件开发 ...
- Tween动画TranslateAnimation细节介绍
Tween动画有下面这几种: Animation 动画 AlphaAnimation 渐变透明度 RotateAnimation 画面旋转 ScaleAnimation 渐变尺寸缩放 Transl ...
- 基于lucene的案例开发:纵横小说分布式採集
转载请注明出处:http://blog.csdn.net/xiaojimanman/article/details/46812645 http://www.llwjy.com/blogdetail/9 ...
- 关于vue 自定义组件的写法与用法
最近在网上看到很多大神都有写博客的习惯,坚持写博客不但可以为自己的平时的学习做好记录积累 无意之中也学还能帮助到一些其他的朋友所以今天我也注册一个账号记录一下学习的点滴!当然本人能力实在有限写出的文章 ...
- web前端简单布局
jquery实现的计算器
- Cookie是存储在客户端上的一小段数据
背景 在HTTP协议的定义中,采用了一种机制来记录客户端和服务器端交互的信息,这种机制被称为cookie,cookie规范定义了服务器和客户端交互信息的格式.生存期.使用范围.安全性. 在JavaSc ...
- js 手机号码简单正则校验
现在手机号码的号段有如下几种,包括17年新发出的三个(166,199,198)号段. 在一些项目注册登录或者其他中,涉及到手机号进行一个简单的有效验证,在前端先进行一个简单的检验: 判断字符串是否符合 ...
- 一个APP开发有那么难吗?
app开发 idea:产品设计喵有一个想法. 人员配置: 攻城狮:前端后端服务器齐撸 产品设计:设计原型/UI效果图(界面/交互)齐撸] 流程分析: 1.产品设计喵反复打磨自己的想法,明确要做什么样的 ...
- easyUI datagrid表头的合并
图列: js代码 function initConfigTable(param){ $("#mulConfigureTableBox").empty(); $("#mul ...