SICP 习题1.41 看似和周边的题目没有关系,突然叫我们去定义一个叫double的过程,事实上这道题的核心还是高阶函数。

题目要求我们定义一个过程double,它以一个过程作为參数,这个作为參数的过程已经约定是一个单參数过程。double过程须要返回一个过程,所返回的过程将传入的过程应用两次。

举例说。假设我们有个过程叫(扇耳光 贱人)。调用这个过程会扇贱人一个耳光。

那么(double 扇耳光)会返回还有一个过程。这个过程没有名字,我们暂且叫他“扇俩耳光”吧,调用(扇俩耳光 贱人)就会扇贱人两个耳光了。

也就是说((double 扇耳光) 贱人)这种调用会扇贱人两个耳光。

好,题目问我们(((double ( double double)) inc) 5)的结果是什么,当中inc方法会给传入參数加1.

要完毕这道题,先看看double怎样定义吧。

全然依照题目意思,定义的double例如以下:

(define (double f)
(lambda (x)
(f (f x))))

为了測试,我定义了一个我自己的inc过程

(define (my-inc x)
(+ x 1))

最后直接測试

(define test-it (((double ( double double)) my-inc) 5))

结果是21,也就是5+16,就是做了16次加一的操作。

为什么呢?

我们能够一步一步展开

;首先将不同的double标号。各自是double1 , double2, double3,这样比較清晰
(define step1 (((double1 ( double2 double3)) my-inc) 5)) ;然后将(double2 double3)展开:
(define step2 (((double1 (lambda (x) (double3 (double3 x)))) my-inc) 5)) ;将(lambda (x) (double3 (double3 x))) 命名为lam1:
(define (lam1 x) (double3 (double3 x))) ;这样step2就等同于以下的step3:
(define step3 (((double1 lam1) my-inc) 5)) ;再将(double1 lam1)展开:
(define step4 (((lambda (x) (lam1 (lam1 x))) my-inc) 5)) ;将my-inc代入step4中得lambda中:
(define step5 ((lam1 (lam1 my-inc)) 5)) ;将里面的lam1还原回原来的定义:
(define step6 ((lam1 (double3 (double3 my-inc))) 5)) ;将里面的(double3 my-inc)展开:
(define step7 ((lam1 (double3 (lambda (x) (my-inc (my-inc x))))) 5)) ; 将step7里的lambda定义为lam2:
(define (lam2 x) (my-inc (my-inc x))) 。那么step7能够转换为:
(define step8 ((lam1 (double3 lam2)) 5)) ; 再将step8中的(double3 lam2)展开得到step9:
(define step9 ((lam1 (lambda (x) (lam2 (lam2)))) 5)) ;将step9中得lambda函数定义为lam3:
(define (lam3 x) (lam2 (lam2))) ;那么step9就能够转换成step10这样:
(define step10 ((lam1 lam3) 5)) ; 将step10中的lam1恢复成原来的定义:
(define step11 ((double3 (double3 lam3)) 5)) ;将(double3 lam3)展开:
(define step12 ((double3 (lambda (x) (lam3 (lam3 x)))) 5)) ;将step12中的lambda函数命名为lam4:
(define (lam4 x) (lam3 (lam3 x))) ;则step12能够表示成step13这样:
(define step13 ((double3 lam4) 5)) ;将(double3 lam4)展开:
(define step14 ((lambda (x) (lam4 (lam4 x))) 5)) ;将5代入step14中的lambda过程中:
(define step15 (lam4 (lam4 5))) ;将lam4还原回原始定义:
(define step16 (lam3 (lam3 (lam3 (lam3 5))))) ;将lam3还原回原始定义:
(define step17 (lam2 (lam2 (lam2 (lam2 (lam2 (lam2 (lam2 (lam2 5))))))))) ;将lam2还原回原始定义:
(define step18 (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc (my-inc 5))))))))))))))))) 。结果就是21了:
(define step19 21)

以上的分析过程比較繁琐,只是也比較具体。

假设从抽象一点的层面来看的话,也能够用第二种方法

考察以下方法:

(((double ( double double)) my-inc) 5)

double过程的作用是将不论什么方法嵌套调用两次。

而(double double)就是将double嵌套调用两次。结果就是将不论什么方法嵌套调用4次。

假设有(define four-time (double double))的话,fourtime过程将不论什么方法嵌套调用4次。

进一步看得话(double (double double))相当于(double four-time)。

相当于是(four-time (four-time x))

这里要特别注意,两次four-time的嵌套调用并非4+4次,而是4*4次调用,就是16次调用。

习题1.41解题完毕。这道题也能够非常好地帮助同学们理解高阶函数,特别是高阶函数的嵌套。

SICP 习题 (1.41)解题总结的更多相关文章

  1. SICP 习题 (1.13) 解题总结

    SICP习题1.13要求证明Fib(n)是最接近φn/√5 的整数,其中φ=(1+√5)/2 .题目还有一个提示,提示解题者利用归纳法和斐波那契数的定义证明Fib(n)=(φn - ψn) / √5 ...

  2. SICP 习题 (1.7) 解题总结

    SICP 习题 1.7 是对正文1.1.7节中的牛顿法求平方根的改进,改进部分是good-enough?过程. 原来的good-enough?是判断x和guess平方的差值是否小于0.001,这个过程 ...

  3. SICP 习题 (1.14)解题总结

    SICP 习题 1.14要求计算出过程count-change的增长阶.count-change是书中1.2.2节讲解的用于计算零钱找换方案的过程. 要解答习题1.14,首先你需要理解count-ch ...

  4. SICP 习题 (1.8) 解题总结

    SICP 习题1.8需要我们做的是按照牛顿法求平方根的方法做一个求立方根的过程. 所以说书中讲牛顿法求平方根的内容还是要好好理解,不然后面这几道题做起来就比较困难. 反过来,如果理解了牛顿法求平方根的 ...

  5. SICP 习题 (1.9) 解题总结

    SICP 习题 1.9 开始针对“迭代计算过程”和“递归计算过程”,有关迭代计算过程和递归计算过程的内容在书中的1.2.1节有详细讨论,要完成习题1.9,必须完全吃透1.2.1节的内容,不然的话,即使 ...

  6. SICP 习题 (1.10)解题总结

    SICP 习题 1.10 讲的是一个叫“Akermann函数”的东西,去百度查可以查到对应的中文翻译,叫“阿克曼函数”. 就像前面的解题总结中提到的,我是一个数学恐惧者,看着稍微复杂一点的什么函数我就 ...

  7. SICP 习题 (2.10)解题总结: 区间除法中除于零的问题

    SICP 习题 2.10 要求我们处理区间除法运算中除于零的问题. 题中讲到一个专业程序猿Ben Bitdiddle看了Alyssa的工作后提出了除于零的问题,大家留意一下这个叫Ben的人,后面会不断 ...

  8. SICP 习题 (2.7) 解题总结 : 定义区间数据结构

    SICP 习题 2.7 開始属于扩展练习,能够考虑不做,对后面的学习没什么影响.只是,假设上面的使用过程表示序对,还有丘奇计数你都能够理解的话,完毕这些扩展练习事实上没什么问题. 习题2.7是要求我们 ...

  9. SICP 习题 (2.6) 解题总结:丘奇计数

    SICP 习题 2.6 讲的是丘奇计数,是习题2.4 和 2.5的延续. 这里大师们想提醒我们思考的是"数"究竟是什么,在计算机系统里能够怎样实现"数".准备好 ...

随机推荐

  1. SharePoint 2013 开启訪问请求

    1.通常,我们进入SharePoint 2013网站,假设没权限会提示该网站未被共享,而没有切换账号或者申请訪问,实在是非常流氓:事实上,SharePoint为我们提供了訪问请求页面.可是可能须要手动 ...

  2. Swift - 获取应用名称、应用版本、设备型号、系统版本等信息

    有时我们在 App 中提交一些统计信息或者用户反馈信息时,为了能更好地进行分析,通常会附带上当前应用程序的名称.版本号.设备型号.以及设备系统版本.下面演示如何获取这些信息. 1,效果图 程序启动后自 ...

  3. Tool-DB:Navicat

    ylbtech-Tool-DB:Navicat Navicat是一套快速.可靠并价格相当便宜的数据库管理工具,专为简化数据库的管理及降低系统管理成本而设.它的设计符合数据库管理员.开发人员及中小企业的 ...

  4. Qt-信号和槽-1对1

    前言:信号和槽是Qt的核心机制,窗体和控件对象之间的沟通一般都使用信号和槽. 对于部件有哪些信号和槽,可以查看help文档. 一.使用自定义槽 1.1 新建工程 新建工程,新建Widget类(基于QW ...

  5. js面向对象概念解析

    ECMAScript有两种开发模式: 1.函数式(过程化) 2.面向对象(OOP). 面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但是,ECMAScri ...

  6. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

  7. php语法学习:轻松看懂PHP语言

    基础语法 开头结尾 PHP脚本以 "<?php " 开头以 "?>" 结尾 <!DOCTYPE html> <html>&l ...

  8. win7系统桌面上图标都变成lnk后缀

    1.右键点击空白处,选择“新建”,点击“文本文档”: 2.将文档命名为“1”,后缀名改为inf: 3.双击打开,复制以下内容: [Version] Signature="$Chicago$& ...

  9. JAVA 静态内部类--转自http://bbs.csdn.net/topics/350021609

    内部类其实并不是非要声明成static的..主要还是要看实际情况决定..静态和非静态有不同的作用.. 引用一篇文章给楼主参考下吧. 在一个类中创建另外一个类,叫做成员内部类.这个成员内部类可以静态的( ...

  10. java导出html页面

    http://blog.csdn.net/zhyh1986/article/details/8727523#t6 http://blog.csdn.net/zuozuofuwaiwai/article ...