计算几何:按顺序给n个圆覆盖。问最后能够有几个圆被看见。。

对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这个点,能盖住这个点的最上面的圆一定是可见的

Viva Confetti


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Do you know confetti?

They are small discs of colored paper, and people throw them around during parties or festivals. Since people throw lots of confetti, they may end up stacked
one on another, so there may be hidden ones underneath.

A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?

The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.



Input

The input is composed of a number of configurations of the following form.

n

x1 y1 r1

x2 y2 r2

. . .

xn yn rn

The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc: coordinates of its
center and radius, expressed as real numbers in the decimal notation, with up to 12 digits after the decimal point. The imprecision margin is 5*10^-13. That is, it is guaranteed that variations of less than 5*10^-13 on input values do not change which discs
are visible. Coordinates of all points contained in discs are between -10 and 10.

Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.

The end of the input is marked by a zero on a single line.

Output

For each configuration you should output the number of visible confetti on a single line.

Sample Input

3

0 0 0.5

-0.9 0 1.00000000001

0.9 9 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 -0.00001 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 0 1.00000000001

2

0 0 1.0000001

0 0 1

2

0 0 1

0.00000001 0 1

0

Sample Output

3

5

4

2

2


Source: Asia 2002, Kanazawa (Japan)

Submit    

problemId=696" style="color:blue; text-decoration:none">Status

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const double eps=5*(1e-13);
const double pi=acos(-1.0); int n; struct Point
{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){}
}; struct Circle
{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double x) {return Point(c.x+cos(x)*r,c.y+sin(x)*r);}
}; double normal(double x)
{
return x-floor(x/(2*pi))*2*pi;
} double dcmp(double x)
{
if(fabs(x)<=eps) return 0;
return (x<0)? -1:1;
} double DIST(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} Circle C[200];
double a[1000];
int tot=0;
bool flag[110]; void check(Point x)
{
for(int i=n-1;i>=0;i--)
{
double d=DIST(x,C[i].c);
if(dcmp(d-C[i].r)<0)
{
flag[i]=true; break;
}
}
} int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
memset(flag,0,sizeof(flag));
for(int i=0;i<n;i++)
{
double x,y,z;
scanf("%lf%lf%lf",&x,&y,&z);
C[i]=Circle(Point(x,y),z);
} for(int i=0;i<n;i++)
{
tot=0;
for(int j=0;j<n;j++)
{
if(i==j) continue;
double dist=DIST(C[i].c,C[j].c);
double ri=C[i].r,rj=C[j].r;
if(dcmp(dist-ri-rj)>=0||dcmp(dist-fabs(ri-rj))<=0) continue;
double t=atan2(C[j].c.y-C[i].c.y,C[j].c.x-C[i].c.x);
double dt= acos((ri*ri+dist*dist-rj*rj)/(2.*ri*dist));
a[tot++]=normal(t+dt); a[tot++]=normal(t-dt);
}
a[tot++]=0;a[tot++]=2*pi;
sort(a,a+tot);
tot=unique(a,a+tot)-a;
for(int j=0;j<tot-1;j++)
{
double u=(a[j]+a[j+1])/2;
double r1=C[i].r+eps,r2=C[i].r-eps;
Point p1=Point(C[i].c.x+r1*cos(u),C[i].c.y+r1*sin(u));
Point p2=Point(C[i].c.x+r2*cos(u),C[i].c.y+r2*sin(u));
check(p1); check(p2);
}
}
int ans=0;
for(int i=0;i<n;i++)
if(flag[i]) ans++;
printf("%d\n",ans);
}
return 0;
}

ZOJ 1696 Viva Confetti 计算几何的更多相关文章

  1. poj1418 Viva Confetti 判断圆是否可见

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Viva Confetti Time Limit: 1000MS   Memory ...

  2. poj 1418 Viva Confetti

    Viva Confetti Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1025   Accepted: 422 Desc ...

  3. uva 2572 Viva Confetti

    思路: 小圆面是由小圆弧围成.那么找出每条小圆弧,如果小圆弧,在小圆弧中点上下左右进行微小位移的所得的点一定在一个小圆面内. 找到最后覆盖这个小点的圆一定是可见的. 圆上的点按照相邻依次排序的关键量为 ...

  4. uva 1308 - Viva Confetti

    这个题目的方法是将圆盘分成一个个圆环,然后判断这些圆环是否被上面的圆覆盖: 如果这个圆的圆周上的圆弧都被上面的覆盖,暂时把它标记为不可见: 然后如果他的头上有个圆,他有个圆弧可见,那么他自己本身可见, ...

  5. UVaLive2572 poj1418 UVa1308 Viva Confetti

    一次放下n个圆 问最终可见的圆的数量 应该是比较经典的问题吧 考虑一个圆与其他每个圆的交点O(n)个 将其割成了O(n)条弧 那么看每条弧的中点 分别向内向外调动eps这个点 则最上面的覆盖这个点的圆 ...

  6. ZOJ 2675 Little Mammoth(计算几何)

    圆形与矩形截面的面积 三角仍然可以做到这一点 代码: #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  7. zoj 3537 区间dp+计算几何

    题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...

  8. LA2572 Viva Confetti

    题意 PDF 分析 两两圆求交点,对每个圆弧按半径抖动. 时间复杂度\(O(T n^2)\) 代码 #include<iostream> #include<cstdio> #i ...

  9. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

随机推荐

  1. 12. mysql show status

    状态名 作用域 详解 Aborted_clients Global 因为client没有正确关闭连接导致client终止而中断的连接数 Aborted_connects Global 试图连接到MyS ...

  2. WPF Prefix 'attach' does not map to a namespace.

    这个是用附加属性时,一定要在属性前面加Path= Visibility="{Binding Path=PlacementTarget.(attach:CommonAttachedProper ...

  3. spark 随机森林算法案例实战

    随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数 ...

  4. ES等待任务——是master节点上的task任务

    等待中的任务编辑 有一些任务只能由主节点去处理,比如创建一个新的 索引或者在集群中移动分片.由于一个集群中只能有一个主节点,所以只有这一节点可以处理集群级别的元数据变动.在 99.9999% 的时间里 ...

  5. ASP.NET中各种缓存技术的特点及使用场景

    对于一些不经常改变却经常被request的数据,我们喜欢将它们缓存在内存.这样用户请求时先到缓存中去取,如果缓存中没有,再去数据库拿,提高响应速度.缓存一般实现在BLL,这样可以与DAL分离,更换数据 ...

  6. Xml实现图片旋转

    1. 需求:不使用Java代码,实现旋转图片动画 2.实现:使用Progressbar控件 3. anim/anim_loading.xml <?xml version="1.0&qu ...

  7. Android Span的简单使用

     Spanable中的常用常量:  Spanned.SPAN_EXCLUSIVE_EXCLUSIVE --- 不包含start和end所在的端点                 (a,b)  Span ...

  8. SSH三个主流框架环境的搭建

    part 1  Hibernate环境的搭建 part2  struts2环境的搭建 第一步:从struts2官网下载需要的各种资料和jar包 第二步:在ecplise里面创建web项目,然后在web ...

  9. 使用 chrome 扩展 Vimium 实现快捷键关闭其他标签页

    Vimium 是一款很强大的键盘操作扩展,几乎所有的操作都可以使用键盘命令完成,还支持自定义按键. 其实 Vimium 很早就支持了关闭其他标签页这个操作,甚至还能关闭左侧标签页和关闭右侧标签页,只是 ...

  10. win10下CorelDRAW菜单栏字体变成白色了怎么办?

    相信很多同学安装了win10系统之后,你的 CDR 菜单栏就变了,变得没有任何内容,以白色显示,win10系统与CorelDRAW早期的版本兼容方面存在问题,(CorelDRAW x7/X8无此问题出 ...