计算几何:按顺序给n个圆覆盖。问最后能够有几个圆被看见。。

对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这个点,能盖住这个点的最上面的圆一定是可见的

Viva Confetti


Time Limit: 2 Seconds      Memory Limit: 65536 KB


Do you know confetti?

They are small discs of colored paper, and people throw them around during parties or festivals. Since people throw lots of confetti, they may end up stacked
one on another, so there may be hidden ones underneath.

A handful of various sized confetti have been dropped on a table. Given their positions and sizes, can you tell us how many of them you can see?

The following figure represents the disc configuration for the first sample input, where the bottom disc is still visible.



Input

The input is composed of a number of configurations of the following form.

n

x1 y1 r1

x2 y2 r2

. . .

xn yn rn

The first line in a configuration is the number of discs in the configuration (a positive integer not more than 100), followed by one line descriptions of each disc: coordinates of its
center and radius, expressed as real numbers in the decimal notation, with up to 12 digits after the decimal point. The imprecision margin is 5*10^-13. That is, it is guaranteed that variations of less than 5*10^-13 on input values do not change which discs
are visible. Coordinates of all points contained in discs are between -10 and 10.

Confetti are listed in their stacking order, x1 y1 r1 being the bottom one and xn yn rn the top one. You are observing from the top.

The end of the input is marked by a zero on a single line.

Output

For each configuration you should output the number of visible confetti on a single line.

Sample Input

3

0 0 0.5

-0.9 0 1.00000000001

0.9 9 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 -0.00001 1.00000000001

5

0 1 0.5

1 1 1.00000000001

0 2 1.00000000001

-1 1 1.00000000001

0 0 1.00000000001

2

0 0 1.0000001

0 0 1

2

0 0 1

0.00000001 0 1

0

Sample Output

3

5

4

2

2


Source: Asia 2002, Kanazawa (Japan)

Submit    

problemId=696" style="color:blue; text-decoration:none">Status

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const double eps=5*(1e-13);
const double pi=acos(-1.0); int n; struct Point
{
double x,y;
Point(){}
Point(double _x,double _y):x(_x),y(_y){}
}; struct Circle
{
Point c;
double r;
Circle(){}
Circle(Point _c,double _r):c(_c),r(_r){}
Point point(double x) {return Point(c.x+cos(x)*r,c.y+sin(x)*r);}
}; double normal(double x)
{
return x-floor(x/(2*pi))*2*pi;
} double dcmp(double x)
{
if(fabs(x)<=eps) return 0;
return (x<0)? -1:1;
} double DIST(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} Circle C[200];
double a[1000];
int tot=0;
bool flag[110]; void check(Point x)
{
for(int i=n-1;i>=0;i--)
{
double d=DIST(x,C[i].c);
if(dcmp(d-C[i].r)<0)
{
flag[i]=true; break;
}
}
} int main()
{
while(scanf("%d",&n)!=EOF&&n)
{
memset(flag,0,sizeof(flag));
for(int i=0;i<n;i++)
{
double x,y,z;
scanf("%lf%lf%lf",&x,&y,&z);
C[i]=Circle(Point(x,y),z);
} for(int i=0;i<n;i++)
{
tot=0;
for(int j=0;j<n;j++)
{
if(i==j) continue;
double dist=DIST(C[i].c,C[j].c);
double ri=C[i].r,rj=C[j].r;
if(dcmp(dist-ri-rj)>=0||dcmp(dist-fabs(ri-rj))<=0) continue;
double t=atan2(C[j].c.y-C[i].c.y,C[j].c.x-C[i].c.x);
double dt= acos((ri*ri+dist*dist-rj*rj)/(2.*ri*dist));
a[tot++]=normal(t+dt); a[tot++]=normal(t-dt);
}
a[tot++]=0;a[tot++]=2*pi;
sort(a,a+tot);
tot=unique(a,a+tot)-a;
for(int j=0;j<tot-1;j++)
{
double u=(a[j]+a[j+1])/2;
double r1=C[i].r+eps,r2=C[i].r-eps;
Point p1=Point(C[i].c.x+r1*cos(u),C[i].c.y+r1*sin(u));
Point p2=Point(C[i].c.x+r2*cos(u),C[i].c.y+r2*sin(u));
check(p1); check(p2);
}
}
int ans=0;
for(int i=0;i<n;i++)
if(flag[i]) ans++;
printf("%d\n",ans);
}
return 0;
}

ZOJ 1696 Viva Confetti 计算几何的更多相关文章

  1. poj1418 Viva Confetti 判断圆是否可见

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Viva Confetti Time Limit: 1000MS   Memory ...

  2. poj 1418 Viva Confetti

    Viva Confetti Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1025   Accepted: 422 Desc ...

  3. uva 2572 Viva Confetti

    思路: 小圆面是由小圆弧围成.那么找出每条小圆弧,如果小圆弧,在小圆弧中点上下左右进行微小位移的所得的点一定在一个小圆面内. 找到最后覆盖这个小点的圆一定是可见的. 圆上的点按照相邻依次排序的关键量为 ...

  4. uva 1308 - Viva Confetti

    这个题目的方法是将圆盘分成一个个圆环,然后判断这些圆环是否被上面的圆覆盖: 如果这个圆的圆周上的圆弧都被上面的覆盖,暂时把它标记为不可见: 然后如果他的头上有个圆,他有个圆弧可见,那么他自己本身可见, ...

  5. UVaLive2572 poj1418 UVa1308 Viva Confetti

    一次放下n个圆 问最终可见的圆的数量 应该是比较经典的问题吧 考虑一个圆与其他每个圆的交点O(n)个 将其割成了O(n)条弧 那么看每条弧的中点 分别向内向外调动eps这个点 则最上面的覆盖这个点的圆 ...

  6. ZOJ 2675 Little Mammoth(计算几何)

    圆形与矩形截面的面积 三角仍然可以做到这一点 代码: #include<stdio.h> #include<string.h> #include<stdlib.h> ...

  7. zoj 3537 区间dp+计算几何

    题意:给定n个点的坐标,先问这些点是否能组成一个凸包,如果是凸包,问用不相交的线来切这个凸包使得凸包只由三角形组成,根据costi, j = |xi + xj| * |yi + yj| % p算切线的 ...

  8. LA2572 Viva Confetti

    题意 PDF 分析 两两圆求交点,对每个圆弧按半径抖动. 时间复杂度\(O(T n^2)\) 代码 #include<iostream> #include<cstdio> #i ...

  9. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

随机推荐

  1. c/c++中sleep()函数毫秒级的实现

    近期看到好多人在问.c/c++中的sleep函数是秒级的,能不能实现毫秒级的呢?当然非常easy.我的写法例如以下 #include <stdio.h> #include <sys/ ...

  2. 关于server和虚拟主机的差别

    文章都是先由本人个人博客,孙占兴:www.teilim.com,先更新,随后CSDN博客才会更新.掌握第一动态请关注本人主站. 原文链接:http://www.teilim.com/guan-yu-y ...

  3. BZOJ1492:[NOI2007]货币兑换 (CDQ分治+斜率优化DP | splay动态维护凸包)

    BZOJ1492:[NOI2007]货币兑换 题目传送门 [问题描述] 小Y最近在一家金券交易所工作.该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和B纪念券(以下简称B券).每个持有金券的 ...

  4. spark Bisecting k-means(二分K均值算法)

    Bisecting k-means(二分K均值算法) 二分k均值(bisecting k-means)是一种层次聚类方法,算法的主要思想是:首先将所有点作为一个簇,然后将该簇一分为二.之后选择能最大程 ...

  5. 杂项-软件: VBA(Visual Basic for Applications)

    ylbtech-杂项-软件: VBA(Visual Basic for Applications) VBA (Visual Basic宏语言) Visual Basic for Application ...

  6. Redis学习笔记(五) 基本命令:Hash操作

    原文链接:http://doc.redisfans.com/hash/index.html 学习前先明确一下概念,这里我们把Redis的key称作key(键),把数据结构hash中的key称为fiel ...

  7. element-ui 实现table整列的拖动

    演示地址 1. 先动态渲染表头,给每一个表头添加一个class=virtual 的画虚线的类名,同时给每个表头加上鼠标点击.拖动.抬起事件:mousedown->mousemove->mo ...

  8. Microsoft Edge 首个 Chromium 内核版释出

    翻译功能释出 navigator.userAgent"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, ...

  9. <改变imageView的颜色和状态栏>

    1. import android.content.Context; import android.content.res.TypedArray; import android.support.ann ...

  10. Mongodb 启动关闭脚本并设置开机自动启动Mongodb

    配置文件内容:[root@yoon etc]# cat mongod.conf logpath=/export/log/mongodb.loglogappend=truefork = truedbpa ...